
NASA Contractor Report-187544

t./"
C7 -_

Advanced Information Processing System:

Design and Validation Knowledgebase

Richard E. Harper
Linda S. Alger
Jaynarayan H. Lala

THE CHARLES STARK DRAPER LABORATORY, INC.

CAMBRIDGE, MA 02139

Contract NAS1-18565

September 1991

N/ A
National Aeronautics and
Space AdmmBstrahon

Langley Research Center
Hampton, Virginia 23665-5225

(NASA-CR-187544) ADVANCED

INFORMATION PROCESSING SYSTEM:

DESIGN AND VALIDATION KNOWLEOGEBASE

Final Report (Draper (Charles

Stark) Lab.) 187 p

N94-71800

Unclas

Z9/82 0002856

NASA Contractor Report-187544

Advanced Information Processing System:
Design and Validation Knowledgebase

Richard E. Harper
Linda S. Alger
Jaynarayan H. Lala

THE CHARLES STARK DRAPER LABORATORY, INC.
CAMBRIDGE, MA 02139

Contract NAS1-18565

September 1991

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

ii

TABLE OF CONTENTS

Title Page

List of Illustrations .. vii

List of Tables ... ix

1.0 INTRODUCTION ... 1-1
1.1 Need for Validated Architectures ... 1-1

1.2 Design for Validation Methodology .. 1-4
1.3 AIPS Design and Validation Knowledgebase.. 1-7

1.3.1 Architecture Knowledgebase ... 1-7
1.3.2 Performability Knowledgebase .. 1-7
1.3.3 Formal Proofs .. 1-8

1.3.4 Other Design and Validation Knowledgebase Components 1-8

2.0

2.3
2.4
2.5
2.6
2.7

ARCHITECTURE KNOWLEDGEBASE .. 2-1
2.1 Introduction ... 2-1

2.2 AIPS Knowledgebase .. 2-1
2.2.1 Purpose .. 2-2
2.2.2 Def'mitions .. 2-3

2.2.3 Approach ... 2-3
2.2.3.1 Overview .. 2-3

2.2.3.20verview-Knowledgebase for Centralized Architectures 2-4
2.2.3.3 Overview- Knowledgebase for Distributed Architectures 2-4

Requirements .. 2-6
Attributes .. 2-7

Rules, Specifications, and Guidelines ... 2-9
Directed Graphs .. 2-11
Conclusions and Recommendations ... 2-17
2.7.1 Conclusions ... 2-17

2.7.2 Recommendations .. 2-17

Appendix 2.A
Appendix 2.B
Appendix 2.C
Appendix 2.D
Appendix 2.E
Appendix 2.F
Appendix 2.G

Requirements .. 2-20
Attributes .. 2-26

FTP Specification ... 2-50
I/O Net Specification ... 2-59
IC Net Specification .. 2-61

System Services Software Specification 2-64
Guidelines ... 2-72

3.0 FORMAL VERIFICATION OF INTERACTIVE CONSISTENCY 3-1
3.1 Introduction ... 3-1

3.2 Approach .. 3-1
3.3 Outline of Development .. 3-2
3.4 Assumptions .. 3-3

3.5 Informal High-level Specifications of a Byzantine Resilient Interactive
Consistency Algorithm ... 3-4

3.6 Formal High-level Specification of Algorithm OM 3-6
3.7 Conclusions and Recommendations ... 3-11

4.0 AIPS FOR ALS ANALYTICAL MODELING ... 4-1

p_,C.AI_;:_C ='.A_E SLt;.NK NOT FILMED

*°°

111 I

4.1 Introduction ... 4-1

4.2 Software Specifications .. 4-1
4.2.1 FTP Markov Model ... 4-2

4.2.1.1 VI_,SI FTP Architecture .. 4-2
4.2.1.2 FTP Failure Rates .. 4-3

4.2.1.3 FTP Reliability Modeling Assumptions 4-5
4.2.1.4 AIPS FTP Markov Model ... 4-6

4.2.1.5 Modeling Approach .. 4-9
4.2.2 IC Network Markov Model ... 4-11

4.2.2.1 Assumptions ... 4-14
4.2.2.2 IC Network Markov Models 4-15
4.2.2.3 Pad Model .. 4-15
4.2.2.4 Launch Model 4-16
4.2.2.5 IC Bus Model .. 4-16

4.2.2.6 Modeling Approach ... 4-21
4.2.2.7 Combinatorial Formulation 4-22

4.2.3 Reliability Analysis Results ... 4-26
4.2.4 Reliability Analysis Conclusions ... 4-28

4.3 Requirements and Performance Modeling .. 4-29
4.3.1 Performance Analysis Approach .. 4-29

4.3.1.1 Performance Analysis Approach 4-29
4.3.1.2 Architecture Synthesis Outputs 4-29

4.3.2 Advanced Launch System (ALS) Functions 4-30
4.3.2.1 Processing Specifications .. 4-30
4.3.2.2 I/O and Interfunction Communication Specifications 4-30

4.3.3 AIPS Performance Model ... 4-31
4.3.3.1 Virtual Architecture Model 4-31
4.3.2.2 Schedule Model ... 4-32
4.3.3.3 Frame Model ... 4-32
4.3.3.4 ADAS Model 4-33

4.3.4 Requirements and Performance Modeling Results 4-39
4.3.5 Requirements and Performance Modeling Recommendations 4-40

5.0 EMPIRICAL
5.1
5.2
5.3
5.4

5.5

TEST AND EVALUATION .. 5-1
Introduction ... 5-1
AIPS Architectural Parameters .. 5-2

Performance and Reliability Metrics .. 5-6

FTP Empirical Knowledgebase .. 5-10
5.4.1 FTP Architecture and H/W and S/W Implementation Technology 5-10
5.4.2 FTP Performance Data ... 5-13

5.4.3 FI'P Reliability Parameters .. 5-14

Input/Output Network Empirical Knowledgebase :..5-16
5.5.1 I/O Network Architecture and Hardware and Software Implementauon

Technology .. 5-16
5.5.2 I/O Network Performance Data ... 5-20
5.5.3 I/O Network Reliability Parameters .. 5-22

Inter-Computer Network Empirical Knowledgebase 5-26
5.6.1 IC Network Architecture and H/W and S/W Implementation

Technology .. 5-26
5.6.2 IC Communication Performance Data 5-29

Impact of Advanced Technology Insertions .. 5-29
5.7.1 Software Technology Insertion - Compilers 5-30
5.7.2 Hardware Technology Insertion - Microprocessors 5-32
Conclusions .. 5-33

5.6

5.7

5.8

iv

6.0 SUMMARY AND CONCLUSIONS .. 6-1

6.1 Architecture Knowledgebase .. 6-1
6.2 Performability Knowledgebase ... 6-1
6.3 Formal Proofs ... 6-3

7.0 REFERENCES ... 7-1

V

vi

LIST OF ILLUSTRATIONS

Figure Title Page

1-1.

1-2.
2-1.
2-2.
3-1.
3-2.
3-3.
3-4.
4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.
4-10.
4-11.
4-12.
4-13.
4-14.
4-15.
4-16.
4-17.
4-18.
4-19.
4-20.

5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.
5-10.
5-11.
5-12.
5-13.
5-14.
5-15.
5-16.
5-17.

Conventional Avionics Design Methodology .. 1-3
AIPS Design for Validation Methodology ... 1-5
Graded Redundancy Attribute .. 2-14
Top-Level Relationship Graph ... 2-16
Physical Arrangement of Fault Containment Regions 3-3
Detail of a Single Fault Containment Region .. 3-4
Interactive Consistency Data Flow .. 3-5
Timing Diagram for Interactive Consistency .. 3-6
Quadruplex Fault Tolerant Processor Architecture 4-3
FTP Markov Model ... 4-7

Probability of Fault Masking Capability after 1 Week Unattended on Pad 4-10
Probability of Launch Loss at End of 10-Minute Boost 4-11
Unreconfigurable Quadruply Redundant Bus with Two Quad FTPs 4-12
AIPS Engineering Model Configuration .. 4-13
Pad Model of the InterComputer Network Transmitters and Receivers 4-17
Launch Model of the InterComputer Network Transmitters and Receivers 4-19
Model of the InterComputer Network: Active Failure Mode 4-20
Inter-FTP Communication Paths for CMC=3 .. 4-23

Possible Communication Loss Configurations for 3 FTPs 4-25
AIPS Virtual Architecture ... 4-31
AIPS FTP Virtual Architecture ... 4-32
Schedule Module ... 4-33

FTP Frame Activity .. 4-34
ADAS Model of Scheduler4-35

CP Subgraphs 4-36
IOP Subgraphs (1) 4-37
IOP Subgraphs (2) ... 4-38
I/O Network Subgraph .. 4-39
AIPS Hardware Building Blocks ... 5-3
Fault Tolerant Processor Architecture: Functional View (One Channel) 5-12

Ada Run Time System & Scheduler Overheads for FTP Model 1 5-14
Ada Run Time System & Scheduler Overheads for FTP Model 2 5-15
Redundancy Management Overhead - No Fault Conditions 5-17
Redundancy Management Overhead - Data Exchange Fault 5-18
Redundancy Management Overhead - Unsynchronized Channel 5-19
Centralized AIPS Configuration ... 5-21
I/O Communications Management Overheads .. 5-23
I/O Request Processing (10 Hz Task) ... 5-24
I/O Redundancy Management Overheads ... 5-24
I/O Redundancy Management: Failed Leaf Node 5-25
I/O Redundancy Management: Single Chain Grow 5-25
AIPS Engineering Model ... 5-27
IC Communication Overhead ... 5-30

Dhrystone (Compiler) Benchmark Results ... 5-31
Whetstone (Compiler) Benchmark Results ... 5-32

plqBCJ)INK PAGE BLANK NOT FtLMED

vii
-,, _" !,_

°°°

VUl

LIST OF TABLES

Table Title Page

4-1

4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.
5-1.
5-2.
5-3.

FTP Device Failure Rates (_e=3.0, _O=0.5) ... 4-4

Definition of Symbols ... 4-8
Pad Failure Rates ... 4-8
Launch Failure Rates .. 4-9

Pad Model Symbol Definition and Numerical Values 4-18
Launch Model Symbol Def'mition and Numerical Values 4-18
Analytical Results for Quad b'TP 4-27
Analytical Results for Triplex FTP .. 4-27
Analytical Results for Quad IC Bus (CMC=3) .. 4-28
AIPS Architectural Parameters ... 5-3
Performance Metrics ... 5-7

Reliability Metrics .. 5-9

PlqBOB)k'_ FAGE BLANK NOT FILMED

X

ADVANCED INFORMATION PROCESSING SYSTEM:

DESIGN AND VALIDATION KNOWLEDGEBASE

1.0 INTRODUCTION

The overall objective of the Advanced Information Processing System (AIPS) pro-

gram is to develop the knowledgebase which will allow achievement of validated fault tol-

erant distributed computer system architectures, suitable for a broad range of applications,

including those which have a failure probability requirement as low as 10 .9 at 10 hours.

This knowledgebase consists of an architecture knowledgebase containing a set of AIPS

architecture attributes, design rules and specifications, and guidelines that are traceable to

top level mission requirements. It also contains a performability knowledgebase compris-

ing quantifiable performability data, organized as analytical and empirical relationships

between performance metrics, reliability metrics, and architectural parameters. Other

knowledgebase components not described in this report include the AIPS hardware and

software building block requirements and specifications, several simulations which have

been written to validate various aspects of the AIPS, the results of empirical evaluations of

the AIPS engineering model, and a technology survey for the Advanced Launch System

application. The specific quantitative and qualitative design objectives of AIPS are dis-

cussed later in this report.

1.1 Need for Validated Architectures

A validated architecture is defined to be an architectural concept that when

implemented in-hardware and software will meet various mission requirements such as

reliability, throughput, transport lag, cost, weight, volume, power, etc. Computer system

reliability and performance are of paramount importance for real time safety- and/or

mission-critical applications. Existing methodologies for validating these attributes of a

computer system architecture, before its implementation in hardware and software, are

either nonexistent or ad hoc in nature. Invariably, the reliability and performance of the

actual system fall short of the mission requirements. This entails costly revisions to the

architecture, hardware, and software which means that the mission cost and schedule goals

are also not met. Furthermore, for safety-critical systems such as commercial transport fly-

by-wire applications the computer system reliability can not be validated with existing ad

hoe validation methods. For example, the state-of-the-art in validation cannot show to a

determined certification authority that a given computer system meets the ultra-low failure

probability requirement of 10.10 per hour for 10 hours that is required in such safety-critical

applications. An architecture knowledgebase and a validation methodology are needed that

will allow the achievement of validated fault tolerant computer system architectures for real

time safety-critical and/or mission-critical applications. This has been the overall objective

of the AIPS program.

1-1
x I

BLANK NOT FILMED r

Even for the Advanced Launch System which has only a moderate mission

reliability requirement (failure probability of 10-5), the current ad hoc avionics design and

validation techniques are neither adequate for validation nor cost effective in producing a

validated avionics suite. The cost of avionics, both in absolute terms and as a fraction of

the total cost of the vehicle, continue to increase. This is in spite of the decreasing cost of a

unit of computation as measured by dollars per MIP throughput or dollars per Mbyte

storage. Some of the increase can be attributed to the increased functionality of avionics

which requires higher throughput and more memory and software. However, with

increased functionality comes an increasing dependence on the correct operation of

avionics. This requires an added architectural dimension, viz. fault tolerance, that is not

present in conventional computer system architectures. Along with fault tolerance comes

hardware and software redundancy, management of redundancy, detection and isolation of

faults, reailocation of resources and many other complexities. Fault tolerance also affects

system performance. For example, the overheads of redundancy management reduce the

throughput available to the applications programs and various error checking layers

generally impede the flow of data through the cohaputer system resulting in higher data

latencies. Since the target applications of these fault tolerant avionics require high

performance real time operations, the performance effects of fault tolerance are just as

important as the reliability aspects. The validation of these avionics architectures is

consequently becoming a complex multi-dimensional problem. One must validate the fault-

free system performance, i.e., show that the system meets various throughput, timing, and

other performance requirements when there are no faults in the system. It is also necessary

to validate the fault tolerance attributes, i.e., show that the system can detect and isolate

faults and recover from them in a timely fashion and with the requisite probability. The

synergism between these two aspects must also be validated, i.e., show that the system

performance during fault handling and after reconfiguration is acceptable. It is this multi-

dimensional validation that is driving the cost of avionics skyward even as the unit costs of

computation are declining dramatically.

The traditional avionics design methodology also adds to the overall cost of

avionics as well as to the schedule slips because it is no longer adequate to address the

complex validation issues. In the traditional design process, the shortcomings of the

computer architecture are not discovered until the Full Scale Engineering Development

(FSED) phase of the design cycle. Sometimes, only after test and evaluation of the FSED

article is it possible to say whether the design meets the mission objectives and

requirements. For example, redundancy management issues which not only impact the

system's ability to tolerate faults but also affect the throughput performance and data

latencies are typically left undefined until the FSED phase. The unacceptable performance

penalties and inadequate fault coverage that result from incorrect redundancy management

designs are discovered in the implementation phase. To correct any deficiencies in the

architecture at this point requires a loop back to the architecture synthesis phase and a very

time consuming and expensive iteration through the design cycle, as shown in Figure 1-1.

1-2

MissionRequirements

I System FunctionalRequirements

Avionics Requirements

Experience
Base

Synthesize
Candidate

Avionics Architectures

I RMA, Performance
WT. Vol_ Power

I
1 ISelect

_ Baseline Architecture

I
Detailed Design Of RTOS, I_
System Services, RM, H/W, IS/W

/ \
iv_,_atioooe_, _._ Va_i_a_onof_W_n_RM, Arch. Attributes S/W Implementation

1

Flight System
Validation

Figure 1-1. Conventional Avionics Design Methodology

1-3

Another problem commonly discovered in the FSED phaseis the incorrect
partitioning of functions betweenhardwareand software. Typically, a lot of time
consumingfunctionsthatcanbemoreefficiently implementedin hardwarearediscovered
to be in softwarethatconsumestoo muchthroughputandis not fastenough. Thereis a
very simpleexplanationof why thisproblemcropsup repeatedlyin realtimefault tolerant
computersystems.Theknowledgebaserequiredto makemanydesigndecisionsaffecting
performance,fault toleranceandredundancymanagementdoesnotexistor is notavailable
to designers.As such,a numberof designissuesarepostponedto be resolvedat some
laterpoint in thedesigncycle. As thedetailedhardwaredesignprogresses,thehardware
implementationoptionsfor systemfunctionsstartto closeout leavingthesystemsoftware
theburdenof solvingandimplementingall theunresolveddesignissues.Thereis alsothe
illusion of leaving different designoptionsopenby not committing them to hardware.
Whentheinadequateperformanceor fault toleranceis discoveredin theFSEDphase,it is
very expensiveto go backandtransferfunctionsfrom softwareinto hardware. It should
be pointedout here that analyticalmodeling of the architecturebefore the start of the
detailedhardwareandsoftwaredesignwill helpcorrecttheseproblemsif andonly if the
architectureis well understoodsothatit canbemodeledwith highfidelity. If, for example,
theredundancymanagementdesignhasnotbeenfinalized onecannot estimatethefault
coverageandotherparametersthatarerequiredfor ahighfidelity model.

1.2 Design for Validation Methodology

A new design for validation methodology has been developed as part of the AIPS

program to reduce the cost of developing and validating fault tolerant computer system

architectures. This design methodology is depicted in Figure 1-2. Although the overall

flow of the design cycle starting from mission requirements and ending with a flight system

appears somewhat similar to the conventional avionics design methodology there are

several key differences that will be highlighted here.

The first important difference is the manner in which an architecture is synthesized

to meet the avionics requirements. In the traditional methodology the architecture synthesis

task is a subjective art form that depends on the creativity, biases and past experiences of

the designers. In the design for validation methodology, a set of functional requirements is

derived from the mission requirements and translated into avionics requirements. These

avionics requirements are then mapped into prevalidated hardware and software building

blocks using a knowledgebase and future technology projections. Validation of the AIPS

building blocks and generation of the knowledgebase and technology projections are goals

of the AIPS program. The validation is being performed using a combination of

requirements acquisition, design for Byzantine resilience, mathematical proofs, analytical

models, and empirical test and evaluation. The architecture knowledgebase allows the

designer to synthesize the architecture in accordance with rules and guidelines such that the

fundamental principles of fault tolerance are adhered to and rationale for each design

decision is related to overall mission requirements. The building block knowledgebase

1-4

I ALS Mission Requirements I
(Mission Scenario &

Operational Environment)

I
System Functional Requirements I

(GN&C, Propulsion Control, IVehicle Health Monitor)

I
I Avionics Requirements I

(Performance, RMA, Wt., Vol.,
Power, Cost)

I

Synthesize Candidate
Avionics Architectures

..A

q

I Analyze RMA, Performance, etc.I
for ALS Mission Scenario

I
F'malize Architecture 1

H/W & S/W Im)lementation
(Brass Board, ASIC Designs)

Validate Brass Board
and ASIC Implementation

Integ__te withVehicle Subsystems

Figure 1-2. AIPS Design for Validation Methodology

1-5

provides the designer with a detailedcharacterizationof the performabilityand other

importantparameters ofeach buildingblock. These characterizations,in conjunctionwith

advanced technology projections,can be used to projectthe expected performabilityof

building blocks implemented in state-of-the-arthardware and software technology. The

AIPS hardware and software building blocks have bccn designed such thattheirmajor

attributessuch as Byzantine resilientfault tolerance,simplex programming model,

reconfigurability,rigorous separation of redundancy management and applications

software, etc. are not dependent on any specific technology of implementation.

Furthermore, the system servicesare implemented such that theiroverheads become

smaller as the processor and communication speeds increase. Therefore, the building

blocks do not become obsolete with technology advancements. Their performance

increasesindirectproportiontoimprovements inprocessingand communication speeds.

Thisdesign methodology makes the architecturesynthesistaskmuch lessof an art

and personaijudgement and provides a solidfoundation of knowlcdgcbasc on which to

base design decisions.A second importantdifferencein the two designmethodologies is

the validationof thearchitecturalconcept and itsrealizationinhardware and software.In

theconventionaldesignmethodology, validationof thearchitecturalcharacteristicssuch as

redundancy management, reliability,maintainability,performance, etc.isdone inparailcl

with the validationof the specifichardware and software implementation of the design.

When itturnsout thatthe system cannot meet the mission requirements,itisnot clear

whether the basic architecturalconcepts arcflawed or the specifichardware and software

implementation ofthe concepthas some shortcomings.

The design for validation methodology decouples the validation of the architecture

design from the validation of a specific hardware and software implementation of that

design. The combination of architectural rules and guidelines, the prevalidated building

blocks knowledgebase and the analytical models of the performability of the synthesized

architecture assure a validated architecture. As stated previously, a validated architecture is

defined to be an architectural concept that when implemented in hardware and software will

meet various mission requirements such as reliability, throughput, transport lag, cost,

weight, volume, power, etc.

The detailed hardware and software designs can commence at this point, i.e., after

an architectural concept has been synthesized. Once the brassboard has been fabricated and

programmed, test and evaluation of the brassboard along with the usual hardware and

software verification tools can be used to ascertain compliance of implementation to

architectural concepts. Only those aspects of the implementation that were changed due to

technology upgrade need to be revalidated. For example, if the processor module in the

AIPS Fault Tolerant Processor is upgraded but the data exchange gate array does not

change then only the processor module needs to be revalidated. If problems are

encountered in this phase then they point to the implementation and not the architecture

itself. For example, if the redundant processors in the FTP fail to synchronize then a likely

1-6

problemmay bea lack of clock determinismin the newprocessormodule ratherthana
basic flaw in the synchronizationalgorithms or the Fault Tolerant Clock. (Clock
deterministichardwarebehaviorisoneof theAIPSarchitecturalrules). Thehardwareand
softwaredesignerrorsin thebrassboardcanbecorrectedrelativelyinexpensivelyandmuch
fasterthanchangingthearchitecturalconcept.Oncetheimplementationerrorshavebeen
foundandcorrected,avalidatedflight systemcanbefabricated.

1.3 AIPS Design and Validation Knowledgebase

The design for validation methodology, as shown in Figure 1-2, needs a substantial

body of knowledge that we collectively call the architecture design and validation

knowledgebase. Such a knowledgebase has been created for the AIPS architecture over the

past few years. This report presents a part of that knowledgebase. References to other

parts of the knowledgebase which are not covered in this report are given in Section 1.3.4

1.3.1 Architecture Knowledgebase

The architecture knowledgebase consists of a set of system architecture attributes,

design rules and specifications, and guidelines that are traceable to various top level

mission requirements. As shown in [16], many missions have common top-level

requirements. A novel methodology, based on directed graphs, has been used to organize

the many interrelationships between these components of the AIPS knowledgebase. This

organization provides a framework for many uses of the AIPS architecture knowledgebase.

System designers who are not necessarily experts in fault tolerance can use it to configure

the AIPS hardware and software building blocks to meet specific mission requirements.

Certification authorities can use it to validate implementations of AIPS building blocks.

The knowledgebase can also be used as a pedagogical tool to explain the AIPS philosophy

and architectural concepts. The methodology and the architecture knowledgebase are

discussed in Section 2.

1.3.2 Performability Knowledgebase

To configure AIPS building blocks to meet specific application requirements, it is

necessary to characterize performability, i.e., performance and reliability, of building

blocks and of ensembles of building blocks through fundamental architectural parameters.

Such a database would eventually consist of all quantifiable knowledge about the

architecture that affects its performability. It is organized as analytical and empirical

relationships between three major domains: performance metrics, reliability metrics and

architectural parameters. The metrics and the AIPS architectural parameters are described

in Section 5 which also discusses the empirical relationships between these three domains

using the results obtained on the AIPS engineering model. The empirical data has been

collected on both the hardware and the software building blocks of AIPS.

1-7

The requirementof extremelylow system failure rates for the AIPS applications

(typically 10 -6 to 10 -10 per hour) precludes computer reliability validation exclusively by

means of experimental evaluation. Therefore, a set of analytical models has been

developed to characterize reliability and availability of the AIPS hardware building blocks.

The models are discussed in Section 4 in the context of the Advanced Launch System

mission requirements. The models arc, however, general enough so that by changing a

few parameters one can predict the reliability and availability for other mission scenarios

also. A performance modeling approach to characterize component utilization, data

latencies and other performance metrics of AIPS is also described in Section 4.

The analytical modeling and empirical characterization of the AIPS building blocks

complement each other. Test and evaluation on the engineering model have been used to

verify model assumptions, determine unknown parameters and increase overall confidence,

and hence claims of validation, in the system.

1.3.3 Formal Proofs

Formal proofs can play a very important role in validating certain aspects of

ultrareliable computer systems. The AIPS building blocks use the results of the formal

distributed systems theory, generally known as the Byzantine Generals Problem, to

provide the ultrahigh reliability necessary in safety-critical applications. This attribute of

AIPS facilitates the use of formal logic to prove certain fault tolerance characteristics of the

architecture. Section 3 discusses this approach and its application to the implementation of

data consistency and validity in the AIPS Fault Tolerant Processor. It should be noted here

that because such proofs can replace the very expensive, tedious and time consuming

Failure Modes and Effects Analysis the cost of validation can be reduced substantially for

any application that can afford the required hardware redundancy. We believe that this is a

strong motivation to design fault tolerant systems such that they lend themselves to formal

verification and analytical modeling techniques even if the reliability requirements are only

moderately high such as for mission critical applications.

1.3.4 Other Design and Validation Knowledgebase Components

In parallel with this report, several other documents have been produced that

contain major components of the AIPS design and validation knowledgebase. These are as

follows.

The AIPS software building block requirements and specifications are described in

Local System Services [1], Input/Output System Services [2], Input/Output Network

Management Software [3], and InterComputer Communication Services [4]. The Fault

Tolerant Processor data exchange hardware requirements and specifications are described

in [1]. The circuit switched node which is the core of the AIPS I/O and intercomputer

1-8

networksis describedin [2]. The InterComputer Interface Sequencer (ICIS) is described

in [3].

Several simulations have also been written to validate various algorithmic aspects of

AIPS. These include the InterComputer Network Contention Algorithm [5], the IC

Network Data Source Congruency algorithms [6], and the IC Network Distributed Growth

algorithm [4].

The AIPS engineering model which consists of three triplex FTPs and a simplex

processor networked together by a 3-layered Inter-Computer network, a 15-node I/O

network, and the System Services software (about 100,000 lines of Ada source code) has

been operational at the Charles Stark Draper Laboratory for some time. The detailed

hardware logic diagrams for the hardware building blocks and the source code listings for

the software building blocks have been provided to NASA Langley Research Center

previously. The engineering model is now under test and evaluation using a hardware pin-

level fault injector. The results of this effort will be published at a later date.

A technology survey was undertaken to forecast the technology projections for the

Advanced Launch System application [7]. These forecasts were used to predict the

performability of the AIPS building blocks in the ALS time frame. These are summarized

in the ALS Architecture Synthesis report [8].

Finally, Section 6 summarizes the state of the AIPS design and validation

knowledgebase and recommends which areas should be pursued further to complete this

body of knowledge.

1-9

1-10

2.0 ARCHITECTURE KNOWLEDGEBASE

2.1 Introduction

The goal of the Advanced Information Processing System (AIPS) program is to de-

velop the "Knowledgebase" needed to assemble distributed fault-tolerant system architec-

tures, and reduce the cost and effort that must be dedicated to the development of each in-

dividual system by eliminating the need to repeat the development of common elements

over and over again. Products of the program are system architecture concepts, a set of

building blocks, and design and evaluation tools that can be used together to implement in-

formation system architectures for a broad range of NASA missions.

In order to ensure that the AIPS architectural concepts are valid and practical, and

that the building blocks are appropriate for implementing the concepts for this broad range

of missions, it is necessary to state the functional and operational requirements that must be

met by the information processing systems. Therefore one of the first tasks in the knowl-

edgebase development must be to establish a baseline set of functional and operational re-

quirements and objectives that systems assembled using the AIPS architectural concepts

and building blocks must meet. These requirements and objectives are discussed in Section

2.3. The attributes obtained from these requirements and objectives are discussed in Sec-

tion 2.4. Rules and guidelines associated with them are discussed in Section 2.5.

These requirements, attributes, rules and guidelines constitute much of the contents

of the AIPS Knowledgebase. A methodology for capturing and expressing this knowledge

for both centralized and distributed architectures as well as an overview of the AIPS

Knowledgebase are discussed in Section 2.2. Part of the methodology created involves

representing the relationships between these requirements, attributes, rules and guidelines

in the form of directed graphs. These interactions are discussed in Section 2.6.

Conclusions and recommendations for the AIPS Knowledgebase are provided in

Section 7.0. Appendices A to G list detailed requirements, attributes and specifications for

AIPS.

2.2 AIPS Knowledgebase

The overall goal of the AIPS program is to develop a "Knowledgebase" which will

allow achievement of validated fault tolerant computer system architectures, suitable for a

broad range of applications. The knowledgebase comprises the AIPS Architecture Knowl-

edgebase, the AIPS Performability Knowledgebase, Formal Proofs, and other components

such as detailed software and hardware building block engineering requirements, specifica-

tions and detailed logic diagrams, simulation and reliability models, fault injection results,

technology projections, and a common mode failure protection strategy. The development

of AIPS Architecture Knowledgebase, consisting of the architecture guidelines and specifi-

cations and their relationship to mission requirements and AIPS attributes, will be the focus

2-1

of this document. The other components of the knowledgebase are mentioned here to pro-

vide a perspective on the total AIPS Knowledgebase.

Key elements of the Architecture Guidelines and Specifications knowledgebase are

high-level mission requirements, system architecture attributes, design rules and specifica-

tions, guidelines, and a methodology for clearly relating these elements to each other.

The knowledgebase for the AIPS is large and involves many interrelationships

among requirements, attributes, rules, specifications and guidelines. These

interrelationships may be either intuitive, quantitative, or formally defined. In our

methodology these relationships are depicted in a directed graph format to allow a designer

unacquainted with the details of fault tolerance technology to understand how an AIPS

system must be organized and operated. Viewed from a different perspective, the graphical

structure allows a validation and verification authority to examine an AIPS implementation

and determine whether it meets the requirements of the applications. The set of

requirements, attributes, rules, specifications, guidelines, and their interrelationships thus

provides a framework for structuring and interconnecting AIPS building blocks into a

computational system which can be shown to satisfy the mission requirements.

2.2.1 Purpose

The primary purpose of the knowledgebase is to provide an organizational

framework for designing and understanding the AIPS. Since April 1984, various

documents on the AIPS program were published. These documents specified hardware,

software, and system design decisions, their rationale, and the requirements and design

specifications. The requirements and design specifications were published as formal

documents [18-27]. However, since the main objective of the AIPS program has been to

explore uncharted territory in the area of distributed fault-tolerant systems, the program has

had a very strong research and development content. The goal has been to demonstrate

certain novel concepts in a laboratory environment with prototype hardware and software,

as opposed to developing a flight qualified system. Consequently, not all the design

specifications, requirements, and their associated rationale are formally documented. They

exist as informal internal CSDL memoranda authored by designers and implementers of the

system for use by other members of the design group.

To reduce the cost of developing and deploying validated fault tolerant systems

based on the AIPS concept, an organizational framework, to be known as the AIPS

Knowledgebase, is being created. The main idea is to gather all the AIPS information that

is currently in various places and produce a methodology which will be able to relay the

information to the user. This methodology is intended to serve several purposes. It

provides an organizational framework for understanding the AIPS concepts and their

motivation, serving as a pedagogy for the theory behind the AIPS. It is also intended to

provide a methodology to structure the AIPS design process for those who may not be

experts in fault tolerant systems. It is intended to provide traceability of the AIPS design

2-2

specifications to requirements and vice-versa, thus enhancing the ease of validation of the

eventual AIPS instantiation. Finally, it is intended to clarify issues surrounding fault

tolerance-related myths and possible controversy relating to the AIPS approach to fault
tolerance.

2.2.2 Definitions

Some of the key words that will be referenced throughout this document will now
be defined.

Requirement: A requirement is a statement of an AIPS design objective. A requirement

may be either quantitative or qualitative.

Attribute: An attribute is an unambiguous statement of a characteristic of the AIPS.

Attributes can be quantitative, qualitative or logical.

Rule: A rule is a principle which must be followed to assure that a higher-level AIPS

attribute holds.

Specification: A specification is an aggregate of rules which describe all relevant

characteristics of an AIPS component. The specification is intended to be sufficiently de-

tailed to allow one "unskilled in the art" to construct the component. The specifications

contain sufficiently rigid and detailed rules so that they preclude the implementer (who may

not be an expert in fault tolerance) from introducing single point failures or from violating

AIPS concepts that might affect the system performance or reliability in a detrimental fash-
ion.

Guideline: A guideline is a statement of policy or philosophy based on Draper experience,

along with a statement of the effects of deviating from the guideline. Guidelines do not

contain enough design detail to translate the AIPS concepts into a hardware and software

realization. For that to happen, it is also necessary to document a detailed set of design

specifications. Guidelines are intuitively motivated and justified primarily through ex-

perience or quantitative analysis.

2.2.3 Approach

2.2.3.1 Overview

Some of the AIPS' applications may require only a centralized computer

architecture, while others may require distributed computer architectures to meet such

requirements as throughput, graceful degradation, physical dispersion and function

migration.

With the above in mind, an approach for the development of the AIPS

Knowledgebase was developed. The AIPS architecture supports fault-tolerant system

2-3

configurationswhich are eithercentralizedor distributed.Building blocksforcentralized

systems are alsothe basic buildingblocks for the distributedconfigurations.The AIPS

concept isone of appending communication capabilitiestocentralizedbuildingblocksso as

toachieve an efficientinterconnectionof modularized elements. The distributedsystem is

thus an aggregationof centralizedelements which are interconnectedby a fault-tolerant

intercomputcrcommunications network.

2.2.3.2 Overview - Knowledgebase for Centralized Architectures

The approach used todevelop the AIPS Knowledgebase involved f'trstexamining

the AIPS centralizedarchitecture.The centralizedAIPS architectureconsistsof both

hardware and softwarebuildingblocks.The hardware buildingblocks area FaultTolerant

Processor (FTP), an Input/Output Network, and FTP-Nctwork Interfaces(IOSs). The

softwarebuildingblocksareLocal System Servicesand Input/OutputSystem Services.

Capturing the knowledge for the centralized architectures occurred during an earlier

phase of the AIPS program [14]. The architectural guidelines and specifications for

centralized versions of the AIPS architecture, such as a single fault-tolerant processor

(FTP) or a FTP with a dedicated I/O Network, are well understood though not necessarily

exhaustively documented. A major portion of the effort during this earlier phase was the

development of this documentation in a formalized manner consisting of the creation of the

knowledgebase for centralized architectures. The approach used to develop this knowl-

edgebase involved examining the AIPS design requirements and objectives, articulating the

attributes and relationships, aggregating the architecture design rules and specifications,

and stating the architecture guidelines.

The requirements and objectives were obtained from references [16, 17]. From

these requirements and objectives, a set of attributes was derived. Specifications and

guidelines were then compiled. These rules and guidelines were compiled after discussions

with Draper personnel as well as an extensive literature search on AIPS. The major docu-

ments that were consulted are listed as references [1, 2, 3, 14].

Additional references are listed in Section 7. After the information on the AIPS re-

quirements and objectives, attributes, rules, specifications, and guidelines was compiled,

the description of the centralized AIPS architecture was performed. This description began

with the development of logical relationships between the AIPS requirements, attributes,

and the architectural rules, specifications and guidelines. These logical relationships are

depicted in the form of directed graphs, to be discussed in Section 2.6.

2.2.3.3 Overview - Knowledgebase for Distributed Architectures

After capturing the knowledgebase for centralized architectures, it was necessary to

expand the knowledgebase to include the rules, specifications, and guidelines relating to

distributed fault-tolerant information processing system architectures. The computational

2-4

coreof adistributedinformationprocessingsystemconsistsof a setof fault-tolerant,Fault

Tolerant Processors (FTPs), a communication mechanism for sharing information between

FTPs and a mechanism that provides each FTP access to external devices such as sensors,

actuators, displays, and other subsystems that are outside the computational core. The core

information processing requirements for a broad range of missions can be met by architec-

tures that are constructed with a common set of building blocks. These hardware building

blocks can be identified as various FTPs, an Inter-FTP communication mechanism made

up of links and nodes (IC Network), and external communication mechanisms (I/O Net-

works). A fault-tolerant mass memory, and a fault-tolerant power distribution system are

also hardware building blocks for distributed architectures. The system software is another

AIPS building block. It provides the traditional services necessary in a real-time computer

such as task scheduling and dispatching, communication with sensors and actuators, etc.

The software also supplies those services necessary in a distributed system such as inter-

function communication across processing sites, management of local and distributed re-

dundancy, management of networks, and migration of functions between processing sites.

Capturing the knowledge for the distributed architectures was performed in the

current phase of the AIPS program [14]. The approach used to develop this

knowledgebase is very similar to that for the centralized architecture.

The two documents that were referenced for the AIPS design requirements and

objectives for centralized architectures [16, 17] were again examined. This time the

requirements and objectives for distributed architectures, such as Function Distribution,

were obtained. In addition to examining these documents, Draper personnel were

consulted for their expertise regarding the AIPS program. These consultations resulted in

additional AIPS requirements and objectives.

From these requirements and objectives, a set of attributes was derived. For each

of the attributes, architecture rules, specifications and guidelines were then compiled.

These attributes, rules and guidelines were compiled after discussions with Draper

personnel as well as an extensive literature search on AIPS. However, the information on

distributed architectures has not yet been fully documented. Most of the information

obtained for the distributed architectures was therefore obtained through discussions with

experienced Draper personnel.

The information compiled on the AIPS requirements and objectives, attributes,

rules, specifications, and guidelines for distributed architectures was then combined with

the information obtained from the centralized architectures. From this large collection of

information, logical relationships between the AIPS requirements, attributes, and the

architectural rules, specifications and guidelines were created and represented in the form of

directed graphs.

2-5

2.3 Requirements

The scope of the requirements is limited to the information processing,

intercomputer communication and input/output interface functions. The requirements

include subjective design objectives, quantifiable performance measures, and selected

functional characteristics.

The AIPS architecture may be evaluated with respect to both qualitative (subjective)

and quantitative (objective) measures. Qualitative evaluation is carried out by examining

architectural specifications, operational philosophy, redundancy management techniques,

etc. Among some of these qualitative parameters are adaptability, modularity and physical

dispersion. The quantitative evaluation results from analytic modeling, simulation,

emulation, and test and measurements of actual system. The quantitative parameters can be

related to reliability or performance. Among the reliability-related parameters are mission

reliability, availability and maintainability. Among the performance-related parameters are

timing (maximum cycle time and minimum transport lag), throughput, and memory size.

The requirements and objectives do not explicitly include signal processing or the human

interface part of the control and display functions, although consideration is given to the

interface requirements for these functions.

The requirements developed for use in the AIPS study are not intended to be an ex-

haustive statement of the requirements for any of the selected missions, but rather arc in-

tended to be representative of the broad range of requirements that axe likely to be placed on

systems that are candidates for the AIPS architecture.

A list of the requirements used in the current development is provided below. The

requirements vary from mission to mission; the quantitative requirements indicated in

parentheses below are obtainable by an Ali'S implementation constructed using 1983

hardware and software technology [16]. The availability, cycle rate, I/O rate, memory,

throughput, transport lag, and reliability capabilities of the AIPS are expected to improve

along with the rapid improvements in reliability and performance of computing technology.

Adaptability

Availability (0.95 failure probability at 5 years with no repair)

Cost Effectiveness

Cycle Rate (up to 100 Hz)

Environment

Expandable I/O (up to 100 Mbit/sec)

Expandable Memory (up to 500 Mbyte)

Expandable Throughput (up to 100 MIPS)

Function Distribution

2-6

GracefulDegradation

Hardware N-fail-op

Low Life Cycle Cost

Low Transport Lag (as low as 5 ms)

Maintainability

Mission Reliability (10 .9 at 10 hours with no repair)

Modularity

System Real Time Clock

Definitions of these requirements and the AIPS approach to fulfilling them are pre-

sented in Appendix A.

2.4 Attributes

Based on the AIPS design requirements and objectives a set of AIPS attributes was

compiled. An attribute is an unambiguous statement of a characteristic of the AIPS. At-

tributes pertain to both the hardware and software building blocks for the AIPS architec-

ture. More specifically, some of the more important attributes that the FTP possesses are

as follows.

There is a common Fault Tolerant Processor architecture that can be easily tailored

to meet the varying performance and reliability requirements for different criticality

functions in a given application, or to meet different requirements for different applications.

The required level of reliability can typically be achieved by choosing the redundancy level

of the FTP from among duplex, triplex and quadruplex. The FTP architecture is designed

such that changing the redundancy level does not impact the operating system, other system

software, performance or the redundancy management approach.

A FTP has sufficient performance that several tightly coupled functions can be col-

located in a single FTP, thus avoiding delays associated with inter-FTP communications.

It is modular so that its interfaces to other ZIPs and I/O devices can be easily adapted to the

specific application environment. The real time operating system, redundancy management

software and I/O user services are common to all FTPs so that they can be validated as part

of the basic building block, the FTP. The FTP is also able to diagnose its internal faults

autonomously and manage its redundancy locally.

An important attribute of the IC Network is that it is sufficiently reliable that critical

information can be transmitted and received correctly between physically dispersed FTPs in

the presence of arbitrarily malicious faults. It has enough performance to support real time

sharing of information between non-collocated functions. It permits graceful growth to ac-

commodate additional processing sites with minimal change in the basic hardware or soft-

ware (system services) architecture. It is able to adapt to faults and reconfigure in real time.

2-7

The IC Network supports communication between FTPs of varying redundancy levels,

with faults in lower redundancy level FIPs confined locally and not affecting communica-

tion between higher redundancy level ZIPs. The contention for access to the communica-

tion mechanism is resolved using a fault tolerant distributed algorithm.

The qualitative attributes that are directly related to the mechanism that links a FTP

to sensors, effectors and other 1/O devices (I/O Network) are similar to those of the IC Net-

work. The contention resolution issue is only applicable to shared I/O media and the

quantitative reliability and performance requirements may be somewhat different from the

IC Network requirements.

A list of the A1PS attributes as currently captured is presented below. A complete

description of each attribute, the reason it is required, and the means of achieving it is pre-

sented in Appendix B.

BitwiseIdenticalInputs

BitwiseIdenticalOutputs

ByzantineResilience

Commercial Processors

Common Mode FaultTolerance

Concurrent 1/O,Computation

ConventionalUser Interface

Damage Tolerance

Diagnosability

FCR FaultsIndependent

Flexible Function Allocation

Fun_on Migration

Graded Redundancy

1/O Net

1/O Network Growth/Repair

IC Network Growth/Repair

Implementation Technology

Independence of Faults

InterComputer Net

Low Component Failure Rate

Low Fault Tolerance Overhead

Low 1/O Net Transport Delay

Low IC Net Delay

2-8

Low SystemServicesOverhead

On-lineMemory

Portabilityof SW Tools

Prevalidated Building Blocks

Real Time Operation

Recon_figurability

RcconfigurableFTP

Repairability

RM IndependentofApplication

Shared Mass Memory

Simplex Programming Model

Software Fault Avoidance

Software Fault Tolerance

SW Development Environment

Testability

Timer-based Interrupt

Variable# ProcessingSites

VariableLocal I/0

2.5 Rules, Specifications, and Guidelines

After stating the attributes, the rules and guidelines for the AIPS building blocks

were compiled. These rules and guidelines imply a set of AIPS attributes that will be

reflected in any avionics system when correctly followed.

A rule is a principle which must be followed to assure that a higher-level AIPS

attribute holds, a specification is an aggregate of rules which describe all relevant

characteristics of an AIPS component, and a guideline is a statement of policy or

philosophy based on Draper experience, along with a statement of the effects of deviating

from theguideline.

An example of a rule is that there must be at least 3f+1 Fault Containment Regions

(FCRs) in a f-Byzantine Resilient FTP; another rule is that members of a FTP must reside

in different FCRs. These rules when taken together result in a specification. Specifications

must apply to physical objects which can be engineered, designed, constructed, and vali-

dated. In the AIPS, physical objects correspond to the various AIPS building blocks: the

FTPs, the I/O Network, the IC Network, and the System Services Software.

Because of time limitations, the AIPS rules were aggregated into specifications for

the FTP, the I/O Net, the IC Net, and the System Services Software. See Section 2.7.1 for

2-9

recommendations for improved aggregation schemes. The names of the rules associated

with each system object are listed below. The complete specifications for the FFP, I/O

Net, IC Net, and System Services Software are presented in Appendices C, D, E, and F,

respectively.

FTP Rules:

2f+1 Inter-FCR Connectivity

2f+l Redundant Copies

3f+l FCRs

Bitwise Comparison of Outputs

Bitwise Identical Code

Copies in Separate FCRs

Dielectric Isolation

f+l Round Input Distribution

FCR Synchrony

Hardware Data Exchange

Hardware Fault Tolerant Clock

Independent Clocking

Independent Power

Interchannel Links

Memory-Mapped I/O

One Net Interface/Channel

Physical Dispersion

Shared CP/IOP Hardware

Shared CP/IOP Memory

Task Watchdog Timer

Chained Transactions

Circuit-Switched Nodes

I/O Sequencer

Circuit-Switched Nodes

IC Interface Sequencer

Reliable Contention Protocol

Reliable IC Communications

System Services Software Rules:

Error Traps

2-10

Fast_FDIR

FTP FDIR
I/O NetFDIR

I/O NetworkManager
IC CommServices

IC NetworkManager

IC SourceCongruency

Layered System Services

Partitioned Design

Privileged Mode

Synchronization Software

System FDIR

System Services on all FTPs

Transient Fault Tolerance

An example of a guideline is that interactive consistency algorithms performed in

hardware reduce a FTP's fault tolerant-specific overhead. A complete list of the guidelines

for the building blocks is presented below. A description of each guideline, its rationale,

and the means for achieving it are presented in Appendix G.

Ada Language

Copies in only 2f+l FCRs

Extra Transactions

Function Prioritization

Hardware/Software Partition

I/O Crosstrapping

Latent Fault Detection

Multiple ConnectionslIOP

Multiple IOSs/FFP

N-Version Software

Non-BR Fault Tolerance

Simultaneous Device Access

Spare Link Cycling

2.6 Directed Graphs

Many mission requirements may be levied upon an avionics system. An

architectural concept such as the AIPS must in turn have some approach to meeting each

mission requirement. In some fashion any architectural approach therefore represents a

2-11

mapping from the mission requirements to a set of architectural rules and specifications

which comprise the crucial tenets which must be followed to ensure that that architectural

concept has been faithfully followed and the mission requirements have in fact been met.

The objective of this study is to formulate and demonstrate the use of a

methodology which allowsthe expression,modification,and verificationof thismapping,

such thatthe relationshipsbetween theAIPS requirements,attributes,rules,specifications,

and guidelinescan be developed and displayed.

A Directed Acyclic Graph (DAG) was chosen to represent the vast amount of

information and complex relationships between the AIPS requirements, attributes, rules,

specifications, and guidelines. In the DAG representing the AIPS knowledgebase, each

entity Ai, which may be a requirement, attribute, rule, or guideline, is viewed as a vertex'in

the DAG. Incoming edges emanate from entities which imply Ai and outgoing edges go to

entities implied by Ai. The edges can represent many relationships. Some of these

relationships are the following:

"...Ai logicallyrequiresAj..."

"...Ai issupported by Aj..."

"...Ai isachieved by Aj..."

Each edge on the directedgraphs isrepresentativeof one or more of the above

relationships.All edges emanating from the entitywhich lead to attributes,rulesand/or

guidelines must be present in order to justify the entity.

The entities, Ai, are intended to constitute statements of fact or assertion about the

architecture. The reason that a particular statement of fact must be made is identified at the

source(s) of the edges which lead into that assertion; how that statement of fact is achieved

is identified by the destination(s) Of the edges emanating from the statement under consid-

eration. Essentially, each assertion contains one or more pointers to the lower level asser-

tions which logically support it and the higher-level assertions which justify it. For any

given assertion, higher level assertions may be requirements, rules, guidelines, or at-

tributes, while lower level assertions may be rules, guidelines, or attributes.

The use of this methodology is illustrated by an example; we will use the Graded

Redundancy attribute. This example will serve to illustrate the methodology and introduce

the reader to the format to be used for the knowledgebase in the Appendices.

The format begins with the tide of the entity, in this case the Graded Redundancy

attribute, followed by a discussion of the entity. At the current level of development of the

knowledgebase, this discussion varies according to the amount of information that has been

captured. It happens that the Graded Redundancy attribute has a relatively large amount of

discussion attached; other entities have a somewhat more terse discussion. Future work is

recommended to fill out the knowledgebase; this work is discussed in Section 2.7.1.

2-12

The question arises as to why an architecture should support Fault Tolerant

Processors (FTPs) possessing varying redundancy levels. The rationale for the attribute is

listed in the column entitled "Why Required," which contains the entries "Cost

Effectiveness," "Mission Reliability," and "Modularity." Graded Redundancy supports the

Cost Effectiveness requirement because it allows the designer of an avionics system to

select the redundancy level appropriate to the mission's functionality, which may in turn

vary for different functions of the mission. No more or less redundancy is forced upon the

designer than is required to meet the mission's reliability goals, supporting a cost effective

hardware implementation. Graded Redundancy also influences achieving a given Mission

Reliability requirement because a given mission reliability is determined by, among other

things, selection of the FTP redundancy level. Finally, Graded Redundancy supports the

Modularity requirement because the modules, which are units of diagnosis and repair in the

present context, are usually the redundant channels of a FTP; partitioning of the system into

diagnosable repairable modules thus hinges on the capability for redundant operation.

Now that we have expressed what the concept of Graded Redundancy is and why it

is needed in the AIPS architecture, we must express how the AIPS architecture achieves it.

The means for achieving a concept is listed in the column "How Achieved," which in the

Graded Redundancy example includes the entries "Identical FTP Design", "InterComputer

Net," and "Simplex Programming Model." The first entity is a rule, "Identical FTP De-

sign," a statement that the simplex, duplex, and triplex FTPs in the AIPS share an identical

design; the only differences are in how many (one, two, or three, respectively) modules

are "populated, with real hardware. A given module or channel need not be fully

populated. The second attribute, "InterComputer Net," is an attribute which, among other

things, states that lower redundancy level (lower-reliability) FTPs can be connected to

higher redundancy level (higher-reliability) FTPs such that the lower-reliability FTPs

cannot corrupt or impede communications between higher-reliability FTPs. The third

attribute, "Simplex Programming Model," is a statement that the programmer's view of the

AIPS FTP is that of a simplex, nonredundant processor regardless of its redundancy level.

The Graded Redundancy attribute, its rationale, and its means of achieving are

depicted in graphical form in Figure 2-1.

Using this methodology, a top-level attribute graph was created (see Figure 2-2).

This graph is an overview of the representation of relationships between the avionics

requirements and the entire set of AIPS attributes. On the left of the graph, the avionics

requirements listed in Section 2.3 are listed. Emanating from each requirement is a set of

edges which terminate at the set of AIPS attributes, rules, or guidelines by which an AIPS

meets that requirement. The top-level graph provides to the user an idea of the depth of

knowledge that is involved when designing a system, and only includes the relationships

between the avionics requirements and the first tier of attributes, rules, and guidelines.

Additional relationships among the attributes, rules, and guidelines are depicted in lower-

level directed graphs.

2-13

___%_ f Idcn_cal

Figure 2-1. Graded Redundancy Attribute

From examination of the top-level graph it is clear that many complex relationships

exist among the requirements and the lower-level attributes, rules, and guidelines of the

AIPS. Moreover, the top-level relationship graph does not depict relationships among the

lower-level entities themselves, nor how the lower-level entities arc achieved by the AIPS

arehitectmal approach. These latter relationships arc conceptualized in lower-level DAGs.

On the lower-level directed acyclic graphs, the attributes which arc mentioned on the top-

level graph are described in detail.

This study does not include the lower-level DAGs in graphical format for a number

of reasons. First, the current tools for manipulating and expressing the AIPS relationships

require the manual construction of graphical depictions. To date, all this information has

been manually produced and organized, a process requiring many man hours. In addition

to being extremely tedious and error-prone, modification of the DAG is quite difficult and

time-consuming. Second, the entire AIPS DAG would not fit legibly on a single page.

Presentation of the entire DAG would therefore have required partitioning the DAG into

numerous page-sized segments and constructing a complex inter-page cross-referencing

scheme. Finally, it is thought that presentation of the raw graphs is an insufficiently rich

explanatory format for the complex relationships existing among the graphical entities.

These considerations and others influenced us to concentrate on the AIPS-specific job of

capturing the AIPS knowledge and identifying the relationships, instead of identifying or

constructing an appropriate knowledge representation and manipulation tool. However, to

help alleviate the great amount of time and effort involved in future applications or exten-

sions of this approach, an appropriate information management tool is required. Desirable

capabilities of such a tool arc discussed in Section 2.7.

2-14

Attribute: Graded Redundancy

In a system with multiple objectives (applications), the AIPS can be configured to

achieve, in an economical way, the requisite probability of loss of each individual applica-

tion function. In other words, only the appropriate level of redundancy required by each

application has to be provided. The required level of reliability can typically be achieved by

selecting the redundancy level of the FTP to be simplex, duplex, triplex, or quadruplex.

In the AIPS it is possible to vary the AIPS FTP redundancy level from simplex to

quadruplex. The FTP hardware design is modular. The basic module is one channel

which comprises two processor and their associated local memory, data exchange, shared

bus controller, monitor/interlock, an I/O sequencer and an IC Interface Sequencer (Not

applicable for centralized system). A duplex PTP consists of two such identical modules or

channels, a triplex FTP has three modules and so on.

An ability to mix duplex, triplex, and quadruplex processors in the same system (and

even simplex) without compromising the integrity of the higher redundancy processors or

the communication between them, makes it possible to match the level of hardware redun-

dancy to the required function reliability.

For duplex FTPs, it is necessary to invoke self tests in order to isolate the fault to one

of the two channels. If a high degree of confidence is necessary for this fault isolation, it

would be best not to do it on-line but to defer it for later maintenance. In a duplex system,

on-line self tests cannot be relied upon to provide correct isolation of faults for every type

of fault. That is, their isolation coverage is not 100 per cent. A far easier and higher cov-

erage approach is to take the unit off line and swap cards to isolate a fault to the card level.

Why Required:

Cost Effectiveness

Mission Reliability

Modularity

How Achieved:

Identical FrP Design

InterComputer Net

Simplex Pmgrammin$ Model

2-15

)

!SW Tools)

)

)

)

)

)

)

_0

Figure 2.2. Top-Level Relationship Graph

2-16

2.7 Conclusions and Recommendations

2.7.1 Conclusions

This study has conceived and constructed a transitive relationship among the AIPS'

mission requirements and architectural attributes, rules, and guidelines. The relationships

among requirements, attributes, rules, specifications and guidelines are expressed through

the use of a Directed Acyclic Graph (DAG) conceptualization.

It is thought that the elaboration of the set of transitive relationships among

important architectural features has several benefits. The relationships depicted in the

directed graphs allow a designer unacquainted with the details of fault tolerance technology

to understand key issues regarding organization and operation of an AIPS. They also

provide a framework which permits traceability of the AIPS mission requirements to the

AIPS design specifications, a traceability which it is believed will enhance the AIPS'

validatability. The approach also provides a pedagogy for the AIPS fault tolerance theory,

and explains the rationale behind the AIPS approach to fault tolerance.

The experience of attempting to unambiguously state architectural characteristics

and their relationships to mission requirements and each other has been extremely difficult

yet illuminating. While far more remains to be done than has been done to date to generate

a complete AIPS architectural specification and plausibly relate it to all mission

requirements, it is felt that the DAG or a similar representation is useful in bringing order

and causality to the process of mapping mission requirements to a computer system

architecture.

2.7.2 Recommendations

Information from numerous AIPS publications and conversations with AIPS

designers has been converted into the DAG format and is included in this document.

However, it is felt that more information gathering and assimilation needs to be done than

has yet been done.

For the knowledge currently captured, this work would comprise review of the

assertions and their relationships and addition of more illuminating text regarding each one.

An activity that has been relatively neglected in the current work is elaboration of the

meaning of each edge in the DAG. This should be performed and would consist of

formulating rigorous arguments that the set of assertions pointed to by the edge set

emanating from a given attribute assures that the attribute holds, and a detailed explanation

of the nature of the dependencies among assertions, including whether they are logical,

quantitative, intuitive, etc.

Late in the present study confusion arose regarding the treatment of the AIPS

building blocks. Entities such as the InterComputer Network were originally treated as

2-17

attributes, while later on it became obvious that they were "system objects" possessing

attributes, rules, and guidelines of their own. Moreover, the mapping of system functions

such as FDIR to the AIPS' system objects possesses attributes and must follow a set of

rules and guidelines, and must be included into this methodology. The formulation

presented herein therefore needs to be augmented to recognize that an AIPS instantiation

comprises

system requirements, which correspond to Requirements in the current doc-

ument,

_ystem attributes, which correspond to Attributes in the current document,

(FTPs, IC Networks, I/O Networks, ICISs, IOSs, System

Software Services), each of which has an aggregate of applicable rules and

guidelines,

system functions (which may depend upon attributes possessed by several

system objects: IC Net FDIR relies upon the system objects FTPs, IC Net-

work, ICIS, and System Software Services),

and

maDoin_s from functions to objects, which consists of a set of rules and

guidelines.

It is our opinion that any continued development should be performed with this

conceptual view as a starting point.

Additional knowledge needs to be converted into the DAG format. This document

has developed and discussed one of the four major categories of information contained in

the total AIPS Knowledgebase: the architecture guidelines and specifications and their

relationship to mission requirements and AIPS attributes. It is recommended that the other

AIPS knowledgebases be addressed. The information gathered on these knowledgebases

needs to be organized and formally documented. All information in the knowledgebases

then needs to be grouped together and presented as one transitively linked unit.

To a certain extent this could continue using the manual method of entering the

knowledge and manually updating links between the assertions, as shown in the

Appendices. Graphical depictions have been generated using the MacDraw tool, while a

simple HyperCard application was written to facilitate assertion entry and management.

However, our experience to date has indicated that a more automated and integrated

information management tool would vastly facilitate the information manipulation required

to use the DAG methodology. Based on our experience, the tool should have the following

characteristics.

2-18

It should allow the entry and maintenance of an arbitrary amount of text regarding

each assertion, and the entry and maintenance of the links between assertions.

Furthermore, each link represents a relationship between two assertions; that relationship

can be logical, qualitative, quantitative, rigorous, or intuitive. The nature of the

relationship should be able to be expressed and updated. Edges emanate from a source

assertion to other assertions, the aggregate of which are intended to guarantee that the

source assertion holds. However, we have found that not all such edge sets form an "and"

relationship; some destination assertions are merely recommendations (e.g., guidelines),

while it is often the case that if one destination assertion is taken to an extreme (e.g.,

Component Failure Rate), then another destination assertion may be irrelevant (e.g.,

Reconfigurability). The information management tool must therefore be able to manage

arbitrary "and/or" logical relations on the set of edges emanating from a source assertion.

The logical relation may in fact change as a function of the quantitative values of the

destination assertions, as in the example above. The tool should have a facility for

consistency checking, that is, to ensure that there are no cycles in the graph.

The tool needs to have an explanation facility to allow a user to ask why an attribute

is required, or how it is achieved. The explanation should be able to proceed to any level

of transitivity desired by the user and included in the DAG. In particular, the tool should

have the capability to propagate changes at the rule and guideline level back to the

requirements level to allow the user to see the effect(s) of violating a rule or a guideline. In

some cases, these effects will be quantitative, in others they will be failure to meet a

requirement. The tool should have the capability to generate and display a graphical

depiction of any subgraph of the DAG; the graphical depiction process has by far been the

most tedious part of our current endeavor. It is our opinion that a tool capable of satisfying

many of these needs should not be very difficult to construct or obtain.

The intended target of this methodology is avionics systems designers and users

who are not necessarily experts in distributed fault tolerant systems. It is therefore

important to provide to them the work we have done to date and allow them to comment on

its organization, presentation, appropriateness of technical depth, and other issues

important to them.

2-19

Appendix 2.A: Requirements

Representative rcqu'n'cments anticipated to be levied upon an AIPS are listed below.

The AIPS capabilities listed below are based upon 1983 computing technology. The avail-

ability,cyclerate,I/O rate,memory, throughput,transportlag,and reliabilitycapabilitiesof

theAIPS arcexpected to improve along with therapidimprovements inreliabilityand per-

formance of this technology.

Adaptability

Availability (0.95 failure probability at 5 years with no repair)

Cost Effectiveness

Cycle Rate (up to 100 Hz)

Environment

Expandable I/O (up to 100 Mbit/sec)

Expandable Memory (up to 500 Mbyte)

Expandable Throughput (up to 100 MIPS)

Function Distribution

Graceful Degradation

Hardware N-fail-op

Low Life Cycle Cost

Low Transport Lag (as low as 5 ms)

Maintainability

Mission Reliability (10 .9 at 10 hours with no repair)

Modularity

System Real Time Clock

For each requirement listed above, we present a statement of that requirement and a

list of attributes which the AIPS possesses which help to ensure that the requirement is

met.

Reauirement: Adaotabilitv

The AIPS core architectural concepts possess minimal sensitivity to changes in

functional re.quircments, performance goals, and levels of desired reliability and/or fault

tolerance. It is possible to physically or functionally add to an implementation of the

architecture while minimizing the effect on existing functions with which the added

function has no communication.

ttaly_as:gcx¢
Layered System Services

Prevalidated Building Blocks

2-20

Reconfigurability

Simplex Programming Model

Reouirement: Availability

The availability of a system at time t, A(t), is the probability that the system is

operational at time t given that it was operational at time 0. During the time interval (O,t)

repairs may have been performed. If the limit of this function exists as t goes to infinity it

expresses the expected fraction of time that the system is available to perform useful

computations.

Availability is typically used as a figure of merit in systems in which service can be

delayed or denied for short periods without serious consequences.

The AIPS architecture shall provide for the achievement of high levels of

operational availability for those applications such as commercial and military aircraft that

require a high rate of mission executions to allow timely repair after a mission, to allow

initiation of a mission with failed components, and to allow delay of maintenance until a

more convenient time or place.

repair.

The AIPS can be designed to possess a 0.95 failure probability at 5 years with no

Representative availability analysis results for the AIPS are presented in Section 4.

How Achieved:

Diagnosability

Function Migration

Low Component Failure Rate

Non-BR Fault Tolerance

Real Time Operation

Reconfigurability

Repairability

Software Fault Avoidance

Reouirement: Cost Effectiyene_s

Cost effectiveness is an example of a qualitative requiremenL The AIPS possesses

several attributes which contribute to a cost effective implementation.

How Achieved;

Copies in only 2f+l FCRs

Flexible Function Allocation

Graded Redundancy

Low Fault Tolerance Overhead

2-21

SW Development Environment.

Reouirement: Cycle Rate

The AIPS can support control loop cycle rates as fast as 100 Hz.

How Achieved:

Concurrent I/O, Computation

Implementation Technology

Low Fault Tolerance Overhead

Low System Services Overhead

T'maer-based Interrupt

Reouirement: Environment

The AIPS must be able to be implemented with components conforming to the

appropriate environmental specification (i.e. radiation hardening, temperature, vibra-

tion/acceleration limits), and power, weight, and volume characteristics for each specific

application without requiring revalidation of the core AIPS architectural concepts.

KggAghir,
Implementation Technology

Reouirement: Exnandable I/O

The AIPS architecture shall be capable of expansion of total external input/output to

100 Mbits/second (1983 computing technology).

How Achieved:

Implementation Technology

Variable Local I/O

Reouirement: Exoandable Memory

The AIPS architecture shall be capable of memory expansion to 500 million bytes

(1983 computing technology). This memory can be divided into two general types: 1) on-

line memory for the storage of currently executing or soon-to-be-executed programs, and

2) mass memory for the storage of programs and data for which immediate access is not

required. The partition between these two types is application-specific.

How Achieved:

On-line Memory

Shared Mass Memory

2-22

Reuuirement: Exoandable Throu_hnut

The AIPS architecture shall bc capable of throughput expansion to 100 MIPS (1983

computing technology). Total throughput refers to the combined processing capabilities

which arc available to support application functions.

How Achieved:

ImplementationTechnology

Low Fault ToleranceOverhead

Low I/O Net TransportDelay

Low IC Net Delay

Low System ServiccsOverhead

Variable# ProcessingSites

Reouirement: Function Distribution

The disa'ibution of application and system service functions among multiple FTPs

shaU bc allowed to change, via function migration, in response to system requirements for

resource/function rcaUocation or in response to component failures. The allowed allocation

of function to processor resource shall include the static no-rcaUocation case.

How Achievegl:

Function Migration

Variable # Processing Sites

Reouirement: Graceful Degradation

Graceful degradationisthe attributewhereby thesystem'sfunctionalcapabilityde-

grades smoothly with the occurrence of faults. After a given and well-defined number of

faults, the system is either still capable of performing all of its intended functions, or certain

less-critical functions have been suspended and the most critical functions can still bc per-
formed.

Byzantine Resilience

Function Migration

Function Prioritization

Variable # Processing Sites

Variable # Processors/Channel

2-23

Reauirement: Hardware N.fail-ou

The hardware will continue to operate correcdy after arbitrarily malicious faults in

up to N separate FCRs.

How Achieved:

Byzantine Resilience

Diagnosability

Reconfigurability

Reauirement: Low Life Cycle Cost

The AIPS possessesfeatureswhich aidinreducingitslifecyclecosts.

How Achieved:

Diagnosability

Low Component Failure Rate

Mission Reliability

Portability of SW Tools

Prevalidated Building Blocks

Reconfigurability

Simplex Programming Model

Reeuirement: Low Transvort La_,

The input transport lag of a system is defined to be the time elapsed from the

availability of an input datum from a sensor to the delivery of that datum to an application

task such as a control task. The output transport lag is defined to be the time elapsed from

the assertion of an output from a computational task to the reception of the output by an

output device such as an actuator or effector. The transport lag requirements for an AIPS

system may range upwards from a lower bound 5 ms (1983 computing technology).

How Achieved:

Implementation Technology

Low Fault Tolerance Overhead

Low I/O Net Transport Delay

Low System ServicesOverhead

Memory-MappedI/0

Reouirement: Maintainability

Loosely speaking, maintainability may be defined as the "ease" with which a

system may be kept in operational readiness over a given period of time.

Quantitatively, maintainability can be indicated by two parameters:

2-24

• MTBF: is the mean-time-between-failures for the system as a whole.

• M'I'IR: mean-time-to-repair, is defined to be the time from the moment of a component

fault to the time it is repaired or replaced with a spare.

R0.sc/xalt
Diagnosability

Function Migration

Low Component Failure Rate

Reconfigurability

Repairability

Testability

Reauirement: Mission Reliability

The Mission Reliability of a system at time t is defined to be the probability that the

system can perform its intended function (in the presence of faults) over the time interval

(0,t). A system's Failure Probability is equal to one minus its Mission Reliability. It is

typically assumed that repair of the system is not performed over the interval (0,t).

Depending on the configuration of an/kIPS instantiation, its failure probability can

range from 10-4 per hour to 10-9 for a 10-hour mission without repair (1983 computing

technology).

Representative reliability analysis resuks for the AIPS building blocks are presented
in Section 4.

How Achieved:

Byzantine Resilience

Common Mode Fault Tolerance

Damage Tolerance

Diagnosability

Function Migration

Graded Redundancy

InterComputer Net

Latent Fault Detection

Low Component Failure Rate

Real Time Operation

Reconfigurability

Software Fault Tolerance

Transient Fault Tolerance

2-25

Reouirement: Modularity

The AIPS hardware and software are decomposed intofine-granularitymodules

which are unitsof service,failure,diagnosis,repairand growth. Modularity isimportant

tofault-tolerantsystems because individualmodules must be replaceableonline.Keeping

modules independent alsomakes itlesslikelythata failureof one module willaffectthe

operationof another module. Having a way to increaseperformance by adding modules

allows the capacityof criticalsystems tobe expanded without requiringmajor outages to

upgrade equipment.

How Achieved:

Ada Language

PrevalidatcdBuildingBlocks

Graded Redundancy

Heterogeneous Load Modulcs

IdenticalFTP Design

InterComputer Net

Layered System Services

Symmetric CP/IOP

Bequirement: System Real Time Clock

The AIPS provides system-wide knowledge of realtime with a clock accuracy and

quantizationcomrncnsurate with application-specificrequirements.Accuracy isdetermined

by the drift rate, update rate and non-deterministic IC communication. The local processor

time is synchronized with the broadcast system time. Upon receipt of the periodic system

time message from the global computer, the enclosed time value is compensated by known

biases and the resultant value used to dedrift the local time. The quantization is determined

by the FTP period.

Timer-based Interrupt

InterComputer Net

Appendix 2.B: Attributes

List of Attributes:

Bitwise Identical Inputs

Bitwise Identical Outputs

Byzantine Resilience

Commercial Processors

Common Mode Fault Tolerance

Concurrent I/O, Computation

2-26

Conventional User Interface

Damage Tolerance

Diagnosability

FCR Faults Independent

Flexible Function Allocation

Function Migration

Graded Redundancy

FO Net

I/O Network Growth/Repair

IC Network Growth/Repair

Implementation Technology

Independence of Faults

InterComputer Net

Low Component Failure Rate

Low Fault Tolerance Overhead

LOw I/O Net Transport Delay

LOw IC Net Delay

Low System Services Overhead

On-line Memory

Portability of SW Tools

Prevalidated Building Blocks

Real Time Operation

Reconfigurability

Reconfigurable FTP

Repairability

RaM Independent of Application

Shared Mass Memory

Simplex Programming Model

Software Fault Avoidance

Software Fault Tolerance

SW Development Environment

Testability

Timer-based Interrupt

Variable # Processing Sites

Variable Local I/O

Attribute: Bitwise Identical lnnuts

Via the source congruency function, each nonfaulty channel of a FTP is provided

with bitwise identical inputs.

Why Required:

Bitwise Identical Outputs

2-27

2f+l Inter-FCR Connectivity

3f+l FCRs

f+l Round Input Distribution

FCR Synchrony

Attribute: Bitwise Identical Outnuts

Nonfaulty copies of a redundant process have bitwis¢ identical outputs.

Byzantine Resilience

Bitwise Identical Code

Bit-wise Identical Inputs

Attribute: Byzantine Resilience

AIPS FTPs which have a redundancy levelof 2f+1 or greatercan toleratearbitrary

(orByzantine)faihn'ebehavior on thepartof fFaultContainment Regions.

In general,up to "f" simultaneous arbitraryfaultscan bc detected,masked, and

identifiedwith unityprobabilityvia bit-for-bitcomparison of the outputs of copies of a

redundant process.

An AIPS InterComputer (IC) Network of triplex or greater redundancy can tolerate

arbitrary (or Byzantine) failure behavior on the part of any component connected to the

network. This includes network nodes and subscribers to the network.

Graceful Degradation

Hardware N-fail-op

Implementation Technology

Mission Reliability

Real Tune Operation

Reconfigurable FTP

Repairability

2f+l Redundant Copies

Bitwise Comparison of Outputs

Bitwise Identical Outputs

Independence of Faults

2-28

Reliable IC Communications

Attribute: Commercial Processors

The AIPS engineering model and other AIPS instanfiafions do not preclude the use

of commercial or other commonly-used processors.

Current Processing Technology

CSDL has constructed a VLSI-based version of the FTP. It is a quadruplcx FTP

using the Motorola 68020 as the base processor. It contains two processors per channel

with one processor devoted to computational functions and the other to I/O functions. This

allows the VLSI FTP to operate as a stand alone computer in a hierarchical system architec-

ture or as a part of a distributed system.

The engineering model of the basic VLSI FTP consists of three boards per channel:

two identical processor cards and a shared hardware card. The processor cards contain the

68020 microprocessor, its Floating Point Co-Processor (68881), one Mbyte each of

PROM and RAM memory, a processor specific Configurable Gate Array (CGA), and inter-

faces to two buses, a modified version of the VME bus which serves as the shared bus and

a full specification VMX bus which serves as a private bus for such things as additional

processor memory. The third card in the system, called the Shared Bus Controller, con-

tains all of the shared hardware and an arbiter to control access to that hardware. The

shared hardware includes the data exchange hardware, shared memory, the Fault-Tolerant

Clock, a Real Time Clock and an interface to a full specification, industry standard VME

bus which serves as the VLSrs AP bus. The data communicator is implemented with a

6000 gate equivalent 2.0 micron CMOS CGA.

SW Development Environment

How A¢hi_ve,_l;

Implementation Technology

Attribute: Common Mode Fault Tolerance

The AIPS possesses limited resilience to common mode faults. Common mode

faults can be caused by external influences such as Electro-Magnetic Interference (EMI),

Electro-Magnetic Pulse (EMP), and cosmic radiation. These sources can affect redundant

computations simultaneously and dilute, if not totally defeat, the protection provided by

hardware replication. There is also the possibility of faults and errors being introduced in

various phases of system design, specification, and implementation. They can manifest

themselves as hardware, software or power-related failures in all of the redundant copies of

the hardware.

2-29

• Why Reza_uired:

Mission Reliability

How Achieved:

FTP_FDIR

Attribute: Concurrent I/O. Comnutation

The AIPS arehitecnne is designed to allow decoupling of the computational and I/O

streams of transactions. The CP is unburdened from performing any I/O operations. The

application code runs on the CP while the I/O processing is done on the IOP. In addition

the system is capable of running chains of transactions on an I/O Network and collecting

data from sensors at the same time as the I/O Processor is performing its various functions.

Why Required:

Cycle Rate

I/O Network Manager

Shared CP/IOP Hardware

Shared CP/IOP Memory

Symmetric CP/IOP

Attribute: Conventional User Interface

Complex programming and operations interfaces can be a major source of system

failures. In the AIPS an attempt is made to simplify or automate interfaces to the system.

An example is the use of ISO OSI-Intemational Standards Organizations on Open System

Interconnections. The OSI model of a communication system is composed of "layers."

These layers contain the functions necessary to perform the communication, with certain

restrictions on the functions in each layer. The layering groups function together to facilitate

modifying any layer with minimal impact to the rest of the system.

Portability of SW Tools

SW Development Environment

ttmy_.Ar,him k
Layered System Services

Attribute: Damage Tolerance

The AIPS is able to tolerate limited damage events such as that caused by weapons

or electrical shorts, overheating, or localized fire.

2-30

Why Required:

Mission Reliability

HOw Achi¢ved:

3f+l FCRs

I/O Net

Independence of Faults

InterComputer Net

Attribute: Dia_nosabilitv

The hardware components of an AIPS are fault tolerant building blocks such as

FTPs, IC Network, and I/O Network. A fault occurring in any such building block is

detected and diagnosed by the AIPS System Services. Faults are diagnosed to the

following items:

FTP: Faults occurring in a FTP are diagnosed at least down to the channel

containing the fault with 100% accuracy. In many cases it is possible to diagnose faults

down to a particular module resident in that channel, with less certainty of accuracy. These

modules may include the IOS, the ICIS, and other I/O devices.

I/O Net: Faults occurring in the I/O network are diagnosed down to either a faulty

link or a faulty circuit-switched node. Because a single'layer I/O network is not Byzantine

resilient faults are not diagnosed with 100% accuracy.

IC Net: Faults occurring in the IC Network are diagnosed down to either a faulty

link or a faulty circuit-switched node. Because the IC Network is triple redundant and

Byzantine resilient, faults can be diagnosed down to a layer with 100% accuracy.

Diagnosis within a layer is not guaranteed to be 100% accurate.

Why Required:

Availability

Hardware N-fail-op

Low Life Cycle Cost

Maintainability

Mission Reliability

Repairability

HQw Achieved:

FrP_FDIR
I/O Network Manager

IC Network Manager

Spare Link Cycling

2-31

Attribute: FCR Faults Indenendent

If P(A) is the probability that a fault exists in one FCR and P(B) is the probability

that a fault exists in any other FCR, then P(AB), the probability that faults exist in both

FCRs, is given by

P(AB) = P(A)P(B).

Independence of Faults

How Achieved:

Dielectric Isolation

Independent Clocking

Independent Power

Physical Dispersion

Attribute: Flexible Function Allocation

Many mappings of applications functions to the several processing sites (FTPs) of a

distributed AIPS are possible. Selection of a desirable mapping is driven by input/output

latencies, interfunction communication latencies, bandwidth, processing, and memory uti-

lization considerations, and functions' accessibility to IIO and other needed resources.

Flexible allocation of functions to the processing sites is achieved through the cross-strap-

ping of sensors, effectors, and other I/O devices across a number of computers through I/O

Networks, through inter-FTP communication capability through the IC Network, and by

the availability of all system services on all FTPs.

Cost Effectiveness

How Achieved:

InterComputer Net

I/O Crosstrapping

System Services on all b'TPs

Attribute: Function Migration

The distributed implementation of the AIPS architecture comprises multiple Fault

Tolerant Processors (FTPs). During routine operations the FTPs at various sites are as-

signed to perform a fixed set of functions, each computer doing a unique set of tasks.

However, in response to some internal/external stimulus such as a fault or a change in

mission mode, the FTPs can be reassigned to execute different sets of functions. This may

be achieved by allowing some functions to migrate from one FTP site to another. Under

2-32

certainconditions,it mayalsoresultin somefunctionsbeingsuspended entirely for a brief

time period or for the remainder of the mission. System Manager functions as well as

application functions can be the target of function migration. For example, the IC Network

manager, a part of the System Manager, could be relocated to an alternate processing site if

the current host should suffer a failure of its interface into the IC Network. Similarly, the

function migration process itself can also be relocated.

In most real-time control applications, executing a function requires not just an

access to program memory and CPU but also inputs from various sensors and access to

actuators, displays, etc. In order to migrate such a function, it is necessary to have access

to these sensors, effectors, and displays from the alternate processing sites. This is

accomplished by placing the required I/O devices on shared I/O Networks (regional or

global). This customization of the AIPS architectural concept for a specific application

must be done by systems engineers using reliability and performance tools. Other

preplanning activity necessary at the time of the system design is the enumeration of all the

events that trigger migration of a particular function and alternative locations of programs

and data.

A layered approach to interfunction communication is used so that the actual

resources used to implement a function are transparent to the applications programmer.

System software modules (specificaUy, the IC Communication Services) know the current

physical location of functions and provide the necessary interfunction communication.

A number of constraints must be observed to achieve function migration:

Alternate function partitions that are potential configurations resulting from

function migration should be designed with consideration of performance

margin requirements.

In order to migrate a function from one FTP to another, it is necessary to

provide adequate cross strapping of I/O devices required by the function to

multiple FTPs.

ALl function migrations are preplanned in AIPS.

A federated system may not reallocate any functions amongst processing

sites in real time.

There shall only be one function migration task in process at any time.

Availability

Function Distribution

Graceful Degradation

Maintainability

2-33

MissionReliability

Reconfigurability

How Achieved:

I/O Crosstrapping

IC Comm Services

System Serviceson allFTPs

Attribute: Graded Redundancy

In a system with multiple objectives (applications), the AIPS can be configured to

achieve, in an economical way, the requisite probability of loss of each individual applica-

tion function. In other words, only the appropriate level of redundancy required by each

application has to be provided. The required level of reliability can typically be achieved by

selecting the redundancy level of the FTP to be simplex, duplex, triplex, or quadruplex.

In the AIPS it is possible to vary the AIPS FTP redundancy level from simplex to

quadruplex. The FTP hardware design is modular. The basic module is one channel

which comprises two processor and their associated local memory, data exchange, shared

bus controller, monitorfmterlock, an I/O sequencer and an IC Interface Sequencer (Not

applicable for centralized system). A duplex FTP consists of two such identical modules or

channels, a triplex FTP has three modules and so on.

An ability to mix duplex, triplex, and quadruplex processors in the same system

(and even simplex) without compromising the integrity of the higher redundancy

processors or the communication between them, makes it possible to match the level of

hardware redundancy to the required function reliability.

For duplex FTPs, it is necessary to invoke self tests in order to isolate the fault to

one of the two channels. If a high degree of confidence is necessary for this fault isolation,

it would be best not to do it on-line but to defer it for later maintenance. In a duplex

system, on-line self tests cannot be relied upon to provide correct isolation of faults for

every type of fault. That is, their isolation coverage is not 100 per cent. A far easier and

higher coverage approach is to take the unit off line and swap cards to isolate a fault to the

card level.

 01.v..Rlamr
Cost Effectiveness

Mission Reliability

Modularity

How Achieved:

Identical FTP Design

InterComputer Net

2-34

SimplexProgrammingModel

Attribute: I/O Net

The/kIPS provides a highly reliable communication path between FTPs and

between a FFP and external I/O devices (sensors and effectors). AIPS provides a fault and

damage tolerant network consisting of a number of full duplex links that are interconnected

by circuit switched nodes to form a virtual multiplex bus. The network consists of a

number of full duplex links that are interconnected by circuit switched nodes. In steady

state, the circuit switched nodes route information along a fixed communication path, or

virtual bus, within the network without the delays which are associated with packet

switched networks. Once the virtual bus is set up within the network the protocols and

operation of the network are similar to typical multiplex buses. Every transmission by any

subscriber on a node is heard by all the subscribers on all the nodes just as if they were all

linked together by a linear bus.

The circuit switched nodes are sufficiently intelligent to recognize reconfiguration

commands from the network manager, which is resident in the FTP. The network manager

performs the necessary diagnostics to identify the failed element and can change the bus

topology by sending appropriate reconfiguration commands to the affected nodes.

The network performs exactly as a bus but is far more reliable and damage tolerant

than a linear bus or ring. A single fault or limited damage can disable only a small fraction

of the virtual bus, typically a node or a link connecting two nodes. Such an event does not

disable the network, as would be the case for a linear bus. The network is able to tolerate

such faults due to the richness of interconnections between nodes. By reconfiguring the

network around the faulty element, a new virtual bus is constructed. The network can tol-

erate hardware faults, limited damage events including electrical shorts, overheating, local-

ized fire and weapons effects. In addition, the network can be expanded very easily by

adding more nodes linked to spare ports in existing nodes without shutting down the exist-

ing network. There are also no topological constraints on the network. In fact, these are

simply subsets of the fault-tolerant network architecture. In effect, almost any bus configu-

ration can be implemented using a circuit switched network. However, for proper opera-

tion, there can be no loops in the active network.

The AIPS I/O network is a reconfigurable, virtual bus which allows FTP

subscribers to access input/output devices or Device Interface Units (DIUs) connected to

the bus. The reconfigurability feature is allowed by the 5-ported nodes which join the

various communications elements into a network. These nodes provide more than the

minimum number of links required to form the bus. Under control of an I/O network

manager, the spare links can be brought into service in response to a network failure, thus

restoring service and increasing the reliability of the network.

2-35

The qualitativeattributesthat'arcdirectlyrelatedtothemechanism thatlinksa FrP

to sensors,cffectorsand otherI/O devices(I/ONetwork) areessentiallythe same as forthe

IC Network. The contentionresolutionissueisonly applicabletosharedI/O media and the

quantitativereliabilityand performance requirementsmay be somewhat differentfrom the

IC Network requirements.

Damage Tolcrance

Reconfigurabilky

How Achieved:

Circuit-Switched Nodes

I/O Network Growth/Repair

I/O Network Manager

Spare Links

Attribute: I]O Network Growth/Reoair

A Re.configuration, Growth and Repair Algorithm for the I/O Network is necessary

to be able to respond in real time to faults in the I/O Network.

A very robust network is established following the growth process. However,

failures in the network hardware can occur at any time, and therefore it is necessary to

periodically collect the status of the network nodes to verify their continued proper

functioning. It is also necessary to be able to respond to communication errors detected

when the network is used by I/O Communication Services to collect data for application

programs. These tasks typically are scheduled to run at a much faster frequency than the

network manager task. The ability to respond to these errors greatly reduces the response

time for network repair.

The network manager is responsible for the maintenance of the bus in the presence

of failures or damage to any of the nodes or connecting links. For the I/O Networks,

errors are detected using techniques such as time outs, illegal protocol, and cyclic

redundancy codes. For the IC Networks, errors are detected using techniques such as time

outs, illegal protocol, cyclic redundancy codes and comparison and voting of the redundant

layers. When an error is detected and identified, the failed element is removed from use

and the bus is restructured using alternate devices or paths where available. Restore tests,

which are performed on the network hardware, do not require the network to be taken out

of service. The network manager can reconfigure the network to incorporate a failed part

that has become operational. On line modifications can range from the reinstallation of a

repair node to the addition of new nodes and links.

2-36

The I/O Network repair procedure varies according to the fault. If the fault is

localized to a link, the network is repaired with spare link switching. If the fault is an

active node failure (babbler), then regrowth of the network is required. If the fault is a

node responding out of turn, the regrowth with testing is performed. In the case of

regrowth and regrowth with testing, the repair of the network may take the network offline

for more than one I/O cycle. Time critical applications may need a parallel network to meet

their performance and reliability requirements.

t:Imy.Ar&i .v.
Circuit-Switched Nodes

I/O Network Manager

Attribute: IC Network Growth/Reoair

The comments regarding the I/O Network Growth/Repair Attribute also apply to the

InterComputer Network Growth and Repair attribute.

InterComputer Net

lSmv_.Ar,hir,.v_ k
Circuit-Switched Nodes

IC Network Manager

Attribute: lmolementation Technol0gv

Because the AIPS is an architectural concept (as opposed to an architectural

implementation) which can be implemented in a variety of technologies, the AIPS can be

constructed of advanced technology components such as high-speed processors, I/O

networks, busses, and network nodes which aid in meeting performance and reliability

requirements.

The AIPS architectural concept allows implementation in advanced hardware and

software technologies without requiring revalidation of the core fault tolerance concepts.

Why Roa_uired:

Cycle Rate

Commercial Processors

Environment

Expandable I/O

Expandable Throughput

2-37

Low Component Failure Rate

Low Transport Lag

On-line Memory

Shared Mass Memory

How Achieved:

Byzantine Resilience

Simplex Programming Model

_Attribute: Indenendence of Faults

Faults occurring in different copies of a redundant process are statistically

independent.

Why Required:

Byzantine Resilience

Damage Tolerance

Hmz r, kitat
Copies in Separate FCRs

FCR Faults Independent

Attribute: InterComnuter Net

Physically dispersed FTPs communicate over a fault- and damage-tolerant

redundant InterComputer Network. This network performs as a multiplex bus, but

possesses reconfigurable circuit-switched nodes for fault and damage repair. In addition,

multiple copies of this reconfigurable circuit-switched network are utilized to allow an

additional degree of reconfiguration capability as well as fault masking communication

paths among the separate FTPs. At least three copies of this network are required to

achieve fault masking operation.

Some of the more important attributes for the IC Network are that it is sufficiently

reliable that critical information can be transmitted and received correctly in the presence of

arbitrarily malicious failures. It has enough performance to support real time sharing in-

formation between non-collocated functions. The communication mechanism is robust

enough to support connections between physically dispersed FTPs. It allows for graceful

growth to accommodate more processing sites with minimal change in the basic hardware

or software (system services) architecture. It is able to adapt to failures and reconfigure in

real time. The IC Networks support communication between FTPs of varying redundancy

levels with failures of lower redundancy level FTPs confined locally and not affecting

communication between higher redundancy level FTPs. The contention for access to the

communication mechanism is resolved using a distributed algorithm.

2-38

Why Required:

Damage Tolerance

Flexible Function Allocation

Graded Redundancy

Mission Reliability

Modularity

Physical Dispersion

Reconfigurability

Shared Mass Memory

System Real Time Clock

Variable # Processing Sites

Circuit-Switched Nodes

I(2 Comm Services

IC Network Growth/Repair

IC Network Manager

Reliable Contention Protocol

Reliable IC Communications

Spare Links

Attribute: Low Comvonent Failure Rate

The AIPS architectural concept permits the selection and utilization of components

having failure rates commensurate with the reliability, availability, maintainability, and cost

requirements of a given mission. Variation of component failure rate does not affect the

core architectural concepts of the AIPS; the effect of varying the component failure rates is

instead reflected in the ultimate reliability of the system as indicated by the AIPS reliability

models.

Why Require_;

Availability

Low Life Cycle Cost

Maintainability

Mission Reliability

Ha.w_.&c,kir,.v_¢
Implementation Technology

Attribute: Low Fault Tolerance Overhead

The primary AIPS approach to fault tolerance is through the synchronous execution

of processes which exhibit bitwise agreement in the absence of faults. The processes of

synchronization, voting, and interactive consistency are mechanized in special-purpose

2-39

hardware, with the result that these functions consume under 5% of the throughput of a

FTP.

In addition,theredundancy management functionsof theAIPS System Servicesare

designed toconsume minimal temporal overhead as well,thuspermittingthe deliveryof a

majorityof the system'sthroughputand bandwidth totheapplication,inturnallowingsuch

constraints as the 5 ms transport lag to be met.

The AIPS employs a hardware implementation of the source congruency, fault

detection and error masking function, and a mostly software implementation of fault

isolation and reconfiguration functions. By performing fault detection and masking in

hardware, the FTP minimizes the amount of time-criticalsoftware necessary to perform

redundancy management. This specializedhardware iscomparable toand in many cases

lessthanthe hardware complexity of thespecializedintcrchannclcommunications hardware

of more software-intensivesolutionsto faulttolerantprocessing. The voting and fault-

handling hardware can be implcmcnted in a singlecustom gate array and can be madc

compatible with any processorarchitectureor microprocessorchip.

The software implementation of faultisolationand rcconfigurationfunctions,

known as theFTP FDIR software,issplitintoseveraltasks.The fasttaskcan be run fre-

quently,while the more complex tasksarc run only on demand or ata lower frequency.

This divisionallowsfor high faultcoverage while reducing the amount of processortime

used. The Ada software task,Fast_FDIR, runs at a high frequency and isnon-intcrrupt-

iblc.This higherfrequencyof operationimproves thereliabilityof theFTP by reducing the

amount of time an errorgoes undetected. This combination of hardware- and software-

implemented functionalityresultsin afaulttolerancetemporal overhead thatistypicallyless

than 10% of theFTP's throughput.

Why Required:

Cycle Rate

Cost Effectiveness

Expandable Throughput

Low Transport Lag

On-line Memory

Real Time Operation

Resource Utilization

Shared Mass Memory

HnmAr,bir,y.C
Fast_FDIR

Hardware Data Exchange

Hardware Fault Tolerant Clock

Hardware/Software Partition

Shared CP/IOP Hardware

2-40

Attribute: Low I/0 Net Transoort Delay

A significant component of a system's transport lag is the time required to perform

I/O network transactions. The AIPS attempts to reduce this lag via a number of

architectural attributes.

X ay_l aair
Expandable Throughput

Low Transport Lag

Chained Transactions

Circuit-Switched Nodes

Contention for Shared I/O

I/O Network Manager

I/O Sequencer

Shared CP/IOP Memory

Simultaneous Device Access

Attribute: Low IC Net Delay

Delays associated with inter-FTP communications may be minimized by collocating

tightly-coupled functions on a single FTP. There is no inherent limitation on the number of

functions that can be supported in a single FTP other than that resulting from memory,

throughput, I/O, or application-specific imposed restrictions.

When, due to throughput, memory, or bandwidth overconsumption, a function

must spill over into multiple FTPs, the AIPS attempts to reduce the inter-function latency

via a number of attributes.

2 ax.gr, aaim
Expandable Throughput

ttam&c,hic.xr
IC Interface Sequencer

IC Comm Services

Attribute: Low System Services Overhead

The AIPS system software provides numerous services in support of user

applications. These services include functions invoked explicitly by applications programs,

as well as functions performed autonomously by the system to maintain proper operation.

2-41

TheAli'S operating system consists of the vendor supplied Ada Run Time System

(RTS) along with those extensions needed to implement the functions of task execution

management, memory management, intertask communications and software exception

handling. The extensions are written in Ada with time critical sections done in assembly

language to reduce system overhead. The AIPS operating system resides on every IOP and

CP.

In the AIPS, I/O devices are accessed through I/O System Services whose purpose

is to present a uniform interface between the application and the I/O devices. This is

intended to buffer the programmer from the complexity of operating the I/O device,

performing fault detection and redundancy management, and other functions. The Ali'S

implementation of these functions is designed to consume minimal temporal overhead.

The following data are representative of performance figures achieved using the

CSDL-modified Ada RunTime System (RTS). The 68010 figures are for the AIPS

Engineering Model FTP (68010, 7.8 MHz, Verdix Ada 5.4), and the 68020 figures are for

the CSDL VLSI FTP (68020, 14.5 MHz, Verdix Ada 5.4).

Modified Ada Delay Scheduling: 1300 microseconds

Modified Delay Dispatch: 1200 microseconds

Simple Rendezvous: 500 microseconds (68010), 125 microseconds

(68020)

Timer Dispatch: 2100 microseconds (68010), 540 microseconds (68020)

Context Switch: 480 microseconds (68010)

Local Event Dispatch: 1000 microseconds (68010), 245 microseconds

(68020)

Remote Task (Event) Dispatch: 1460 microseconds (68010), 465 mi-

croseconds (68020)

Shared Memory Protected Access: 650 microseconds (Access - one CPU),

300 microseconds (Rupt handler - other CPU)

AIPS FTP Operating System Overhead is 23% of a 40 millisecond frame.

CSDL VLSI FTP Operating System Overhead is 6% of a 40 millisecond

frame.

)ghz. alaim
Cycle Rate

Expandable Throughput

Low Transport Lag

On-line Memory

Real Time Operation

2-42

How Achieved:

Implementation Technology

IC Comm Services

I/O Network Manager

Attribute: On-line Memory

The amount of on-line memory available to an AIPS application suite can be varied

by varying the number of processing sites in the AIPS or by varying the amount of

memory per channel of an AIPS FTP. Because of reasonably low memory consumption

by the AIPS System Services and fault tolerance-related functionality, most of this memory

can be made available to the application. The amount of memory available within a given

weight, power, and volume envelope varies as technology progresses. Because the AIPS

architectural concept is invariant with respect to implementation technology, these advances

in technology can be incorporated into advanced AIPS configurations.

 a.v_gmakr
Expandable Memory

Implementation Technology

Low Fault Tolerance Overhead

Low System Services Overhead

Variable # Processing Sites

Variable Memory/Channel

Attribute: Portability of SW Tools

Existing software development, debugging, and validation tools can be utilized to

program an AIPS.

Why Required:

Low Life Cycle Cost

SW Development Environment

Conventional User Interface

Attribute: Prevalidated Buildin_ Blocks

AIPS is a multicomputer architecture composed of hardware and software building

blocks. These are fault tolerant processors, fault and damage tolerant inter-computer and

input/output networks, a fault tolerant mass memory, a fault tolerant power distribution

system and system software. Each AIPS building block is designed so that it can be vali-

2-43

datedindividually. Thesebuildingblocksaretestedandvalidatedbeforebeingincorpo-
ratedinto asystem.

Why Required:

Adaptability

Low Life Cycle Cost

Modularity

Fault Tolerant Processor

FO Network

InterComputer Network

System Software Services

Attribute: Real Time Ooeration

One component of a computational system's reliability

requirement is that it meet real-time deadlines With a high probability.

deadlines can represent system loss, also known ad dynamic failure.

and/or availability

Failure to meet such

The AIPS system is capable of real-time operation, that is, of predictable and

deterministic response to events. These events may be timer interrupts or external

environmentally-induced events such as an I/O event, fault occurrence, or unanticipated

mission mode changes. Real-time behavior is guaranteed in the presence of arbitrary

behavior on the part of a subset of the AIPS components.

Why geo_uired:

Availability

Mission Reliability

IJsa Atdlir,m&
Byzantine Resilience

Low Fault Tolerance Overhead

Low System Services Overheads

Timer-based Interrupt

Attribute: Reconfi_urabilitv

Upon occurrence of component faults the AIPS may reconfigure its components to

replace the failed component or to isolate it from the rest of the system. The component

may be replaced by backup spares. Alternatively, it may simply be sWitched off and the

system capability to execute all of its application functions degraded.

2-44

Systemobjects which may be re.configured are:

• Fault Tolerant Processors

* InterComputer Network

• I/O Network

• Application Functions (function migration)

Adaptability

Availability

Hardware N-fail-op

Low Life Cycle Cost

Maintainability

Mission Reliability

HOw Achieved;

Function Migration

FO Net

InterComputer Net

Reconfigurable FTP

Attribute: Reconfi_urable FTP

A redundant Fault Tolerant Processor (FTP) is capable of surviving, detecting,

identifying, and reconfiguring from a fault which causes any single component to exhibit

arbitrary (i.e., Byzantine) behavior, with a probability approaching unity.

The reconfiguration (or downmoding) process consists of setting vote and clock

masks in the interchannel data exchange hardware and hardware fault tolerant clock such

that the outputs of the faulty channel are not considered in votes and synchronization. The

monitor interlocks are set such that the outputs of the channel of the FTP determined to be

faulty is disabled.

• A quadruplex redundant FTP is reconfigurable to be fail-op-to-triplex/fail-op-to-du-

plex/fail-safe-to-simplex;

• A triplex redundant FTP is reconfigurable to be fail-op-to-duplex/fail-safe-to-simplex;

• A duplex redundant FTP is reconfigurable to be fail-safe-to-simplex;

• A simplex FTP cannot be reconfigurable to a safe state with any degree of certainty.

Why Required:

Reconfigurability

How Achieved:

Byzantine Resilience

2-45

HardwareDataExchange

Hardware Fault Tolerant Clock

Attribute: Renairabilitv

In the AIPS, a component diagnosed as failed can be replaced, thus effecting repair.

As with detection, repair can be either on-line or off-line. In off-line repair, either

the failed component is not necessary for system operation, or the entire system must be

brought down to perform the diagnosis and repair. In on-line repair, the component may

be replaced immediately by a backup spare in a procedure equivalent to reconfiguration, or

operation may continue without the component, as is the case with masking redundancy or

graceful degradation. In either case of on-line repair, the failed component may be physi-

cally replaced or repaired without interrupting system operation.

The AIPS approach to achieving repairability is indicated by the attributes listed

below. In addition, those attributes which support the Modularity Requirement also assist

in achieving the Repairability Attribute.

Why Required:

Availability

Maintainability

ttamArdlitam
Byzantine Resilience

Diagnosability

Attribute: RM lndeoendent of Annlication

In the AIPS, the Redundancy Management (RM) software is an integral part of the

System Software Services and is not visible or accessible to the applications programmer.

As part of the System Software Services building block, the RM software has been

prevalidated by comprehensive examination and testing. Its correctness of execution is

therefore independent of that of the application software. Similarly, validation of the cor-

rectness of the application software is independent of the AIPS RM strategy or software.

Xfltv.l m=
Simplex Programming Model

Ro_v..Ar,kir,.xe&
FTP_FDIR

Attribute: Shared Mass Memory

In addition to the memory contained in each FTP, certain AIPS applications will re-

quire an amount of memory to be shared among several FTPs. This is referred to as the

2-46

Shared Mass Memory Attribute. This memory resides on the InterComputer Network in a
manner similar to a FTP.

Why Required:

Expandable Memory

Implementation Technology

InterComputer Network

Low Fault Tolerance Overhead

Attribute: Simnlex Pro_rammin_ Model

A change in the redundancy level of an AIPS FTP does not impact the application

software. Regardless of a FTP's redundancy level, the programmer's view of that FTP is

that of a highly reliable, nonredundant, "simplex" FTP.

Why Required:

Adaptability

Graded Redundancy

Implementation Technology

Low Life Cycle Cost

SW Development Environment

How AchicveM;

RM Independent of Application

Attribute: Software Fault Avoidance

The AIPS approach to software fault avoidance primarily relies upon a well-tested,

familiar software development environment. The use of such an environment is possible

because the AIPS approach to hardware fault tolerance is independent of the application

software development process.

Xdlx.1/.¢aaily
Availability

Mission Reliability

How Achieved:

Ada Language

SW Development Environment

-47 ' •

Attribute: Software Fault Tolerance

The AIPS possesses architectural means to assist in tolerating faults in the System

Services software and the applications software.

Why Required:

Mission Reliability

Ada Language

ErrorTraps

FTP FDIR

N-Version Software

Non-BR FaultTolerance

PartitionedDesign

PrivilegedMode

Task Watchdog Timer

Attribute: SW Develonment Environment

AIPS application software can be developed and validated using tools, compilers,

and development stations already available for simplex, nonredundant processors. This is

because the fault tolerance of the AIPS FTP is transparent to the application programmer,

and because the AIPS architectural concept supports the use of commercially available

processors. Because the software development process exactly duplicates the process

which occurs in a simplex machine, it is necessary to have only a debug capability for a

simplex channel. An AIPS is programmed in the Ada language using a validated Ada

compiler, which provides standards for software interfaces.

2Ol.z.Rmtlim
Cost Effectiveness

Software Fault Avoidance

How Achieved:

Ada Language

Commercial Processors

Portabilityof SW Tools

Simplex Programming Model

?dtribute: Testability

The AIPS architecture is designed to be testable in the sense that the operability of

each major system component (CP/IOP, Data Exchange hardware, networks, and

software) can be ascertained with a high degree of certainty.

2:48

Maintainability

How Achieve_;

CP/IOP Testability

Data Exchange Testability

Error Logging

Network Testability

Performance Logging

Software Testability

Attribute: Variable # Processin_ Sites

The distributed version of the AIPS comprises two or more FTPs, interconnected

by the InterComputer (IC) Network. The number of FTPs in a distributed AIPS is deter-

mined by the application's throughput, memory, reliability, and physical dispersion re-

quirements. The number of FTPs in a distributed AIPS is upper-bounded by contention

effects on the IC Network.

Why Required:

Expandable Throughput

Function Distribution

Graceful Degradation

On-line Memory

How Achieve;

InterComputer Net

Attribute: Variable Local I/O

The I/O network can be expanded by adding more nodes linked to spare ports in

existing nodes. Nodes and subscribers to the new nodes (I/O devices or FTPs) can even

be added without shutting down the existing network.

Why Req_ire_;

Expandable I/O

Extra Transactions

Multiple Connections/IOP

Multiple IOSs/FTP

2-49

Appendix 2.C: FTP Specification

FTP Rules:

2f+1 Inter-FCR Connectivity

2f+1 Redundant Copies

3f+l FCRs

Bitwise Comparison of Outputs

Bitwise Identical Code

Copies in Separate FCRs

Dielectric Isolation

f+l Round Input Distribution

FCR Synchrony

Hardware Data Exchange

Hardware Fault Tolerant Clock

Identical FFP Design

Independent Clocking

Independent Power

Interchannel Links

Memory-Mapped I/O

One Net Interface/Channel

Physical Dispersion

Shared CP/IOP Hardware

Shared CP/IOP Memory

Symmetric CP/IOP

Task Watchdog Timer

Timer-based Interrupt

Rule: 2f+l Inter-FCR Connectivity

Each FCR must be connected to each other FCR through at least 2f+l disjoint

communication paths.

All inter-FCR connections are made using line drivers, receivers and transceivers

together with appropriate isolation resisters and point-to-point transmission lines with asso-

ciated line termination networks. This electrical isolation prevents a fault in any given FCR

from migrating past the boundaries of that FCR and corrupting other FCRs.

Why Required:

Bitwise Identical Inputs

Rule: 2f+l Redundant Conies

At least 2f+l copies of a redundant process are required for fault masking.

2-50

Why Required:

Byzantine Resilience

Rule: 3f+l FCRs

To tolerate f simultaneous Byzantine faults, a FTP must possess at least 3f+l Fault

Containment Regions.

Processors, memories, and buses are replicated to achieve a very high degree of

reliability and fault tolerance. The redundant elements are operated in tight synchronism

which results in exact replication of computations and data. Fault detection coverage with

this approach is one hundred per cent once a fault is manifested.

The hardware redundancy is built into AIPS to provide protection against random

hardware faults. The number of such faults that can be tolerated depends on the level of

redundancy. A triplex FTP can detect and identify a single fault with 100 per cent cover-

age. If two such faults occur nearly simultaneously in two processor channels, whether or

not they are identical faults, the coverage drops much below a 100 per cent. This near si-

multaneity can be defined more precisely in terms of a time window which is dependent on

the region affected by the fault. Within a triplex F'q_, this window of vulnerability is the

order of tens of milliseconds. A certain amount of time is required for the software to react

to the manifestation of a hardware fault and identify and recover from it before the next

fault manifests itself. This reaction time forms the window during which the system is

vulnerable to a second fault.

Why Required:

Bitwise Identical Inputs

Damage Tolerance

Associated Guideline:

Copies in only 2f+1 FCRs

Rule: Bitwise Comnarison of Outnuts

Each copy of a redundant process must compare its output with that of the other

copies to achieve fault detection, masking, and identification.

 a.x.gmailr,
Byzantine Resilience

How Achieved:

Hardware Data Exchange

2-51

Rule: Bitwise Identical Code

Each channel of a FTP possesses one or more processors. To achieve bitwise

identical outputs in the absence of faults, processor replicates (CP, IOP, etc.) residing in

different channels must execute bkwise identical instructions.

3 ay_aulakl
Bitwise Identical Outputs

Rule: Conies in Senarate FCRs

Copies of redundant executions must reside in separate Fault Containment Regions.

For example, if it is desired to realize a redundant, fault tolerant Computational Processor

(CP), then copies of the CP must reside in separate FCRs.

Why Required:

Independence of Faults

Rule: Dielectric Isolation

All inter-fault set connections are made using line drivers, receivers and transceivers

together with appropriate isolation resisters and point-to-point transmission lines with asso-

ciated line termination networks. This electrical isolation prevents a fault in any given FCR

from propagating past the boundaries of that FCR and causing fault to occur in other

FCRs.

FCR Faults Independent

]_ule: f+l Round Innut Distribution

Simplex source congruency is defined as congruent or identical distribution of data

from a simplex source to a redundant system. This simplex source of data may be within

or without the system. It is important that all redundant copies of hardware receive congru-

ent values of data originating in the simplex source. This is a necessary condition in fault

tolerant systems that rely on exact replication and comparison of computational streams.

One must perform source congruency operations on an simplex data coming into a

redundant computer to prevent single point failures in the design. It is not sufficient to dis-

tribute simplex data to redundant elements in one step. To tolerate a single Byzantine fault,

the redundant elements must exchange their copy of the data with each other to make sure

that every element has a congruent value of the simplex data. This role generalizes to a re-

quirement that, to tolerate f simultaneous Byzantine faults, the redundant elements must

perform f+l interchannel exchanges of data.

2-52

Why Reo_oirr41;

Bitwise Identical Inputs

How A_hi_vf, d:

Hardware Data Exchange

Rule: FCR Svnchrony

Process replicates residing in different Fault Containment Regions must be

synchronized to within a known temporal skew.

Bitwise Identical Inputs

How Achiewd:

Hardware Fault Tolerant Clock

Synchronization Software

Rule: Hardware Data Exchange

The AIPS FI'P possesses a data exchange (DX) mechanism that complies with the

Byzantine Generals Problem requirements for number of FCRs, connectivity, rounds of

communication and bounded skew.

The data exchange hardware in the AIPS FTP provides some of the most important

functions from the viewpoint of fault tolerance and redundancy management. This hard-

ware, in conjunction with the Fault Detection, Isolation, and Reconfiguration (FDIR) soft-

ware detects hardware faults in the FTP, isolates them to at least a single channel and in

many cases to one card in a channel, and takes appropriate action to prevent errors from

propagating to other channels within the b'TP as well as to devices and computers outside

the FTP. The data exchange hardware, in conjunction with the I/O system services soft-

ware, provides a congruent flow of data from sensors, displays, actuator feedbacks, and

other devices on the I/O network to the redundant channels of the FTP. It also facilitates

transmission of voted results to devices on the I/O network.

A variable number of redundant copies of transmitted data, depending on the source

computer redundancy level, must be received by each channel of the FTP, processed for er-

rors, and then in some cases voted across the FTP channels before they can be passed onto

the user of that data. The data exchange hardware, in conjunction with the IC communica-

tion services, performs these functions and provides a congruent flow of data from other

FTPs on the IC Network to the redundant channels of the FTP. Is also facilitates trans-

mission of voted results to FTPs on the IC Network.

2-53

The cross-channel communication and majority voter/source selection logic for the

triplex FTP is used. This unique hardware is designed to support the theoretical require-

ments for exact consensus in the presence of arbitrary faults. The communicator data ex-

change hardware in each channel resides within a fault containment region. An interstage

in each channel, with its independent timing and voltage references, forms another fault

containment region. Thus, there are at least six fault containment regions in a triplex FTP.

The data exchange hardware is used to exchange data, the b-'rC signals, and

external interrupts between channels. Data is exchanged among redundant channels on

point-to-point links. The data exchange hardware also performs the bit-for-bit voting, fault

detection and masking functions in a manner that satisfies all the requirements to protect it

from Byzantine failures. The data exchange voter compares the three input streams on a

bit-by-bit basis and produces a "majority" output bit for each input bit. The majority output

of the voting process is compared to each of the three inputs and if any disagreements are

detected, the identity of the disagreeing channel is stored in an error register, called the

Error Latch. There are three bits in this latch: one bit for each of the three channels. In the

presence of a single fault, the voter produces the correct result and latches the identity of the

failed channel. As the name implies, this error information stays latched until cleared ex-

plicitly. The error latches are, in fact, read as memory mapped registers by the FDIR soft-

ware, a critical part of the FTP operating system. A read operation automatically clears the

error latches so that every time the FDIR software reads them, it obtains new error infor-

marion. Between reads all error indications are OR'ed.

The data exchange hardware appears as a set of four transmit registers and one

receive register on the IOP-CP shared bus. One transmit register is for voted exchanges

and the other three are for simplex exchanges. For simplex source exchanges, data from

the selected channel is transmitted to the three interstages. The interstages rebroadcast this

data to every processor. The three copies received by each processor are voted in hardware

on a bit-by-bit basis and deposited in the receive register. For voted exchanges, each

channel writes to its own interstage. The second half of the operation is the same as for a

simplex exchange. In both cases, the exchange hardware masks any single faults while

voting on three copies of the data and also records the source of any faults in error latches.

The basic architectural philosophy is to implement the fault detection and error masking

functions in hardware since these functions are performed very frequently.

Triplex ZIPs can isolate faults to one of three channels with high coverage using

the data exchange hardware.

It is necessary to uncover latent faults in the voter and error latch hardware by

periodically writing erroneous data patterns and verifying that the erroneous pattern is

detected by the hardware.

2-54

 Tw_8.c,aailr
Bitwise Comparison of Outputs

f+l Round Input Distribution

Hardware/Software Partition

Low Fault Tolerance Overhead

Reconfigurable FTP

Rule: Hardware Fault Tolerant Clock

Identical processes executing on redundant hardware channels eventually diverge

due to minor differences in the hardware timing of redundant channels. The AIPS

approach to synchronizing redundant hardware elements is to phase lock their clocks and to

design the hardware to be clock deterministic. Such an approach provides continuous

synchronism in the background without any intervention on the part of the software.

The FCRs of a FTP are kept in synchrony by a distributed high-speed fault tolerant

clock signal which directly feeds the FCR's clock network. Hardware implementation of

the synchronization function relieves the operating system or applications software from the

overhead and complexity of performing algorithms to synchronize the redundant channels.

 x.g:aaiw
FCR Synchrony

Independent Clocking

Low Fault Tolerance Overhead

Reconfigurable FrP

Rule: Identical FTP Design

The simplex, duplex, and triplex FTPs in the AIPS share an identical design. The

only differences are in which modules are "populated" with real hardware. A given module

or channel need not be fully populated.

Why Re,,quir_;

Graded Redundancy

Modularity

Rule: lndenendent Clockin_

Each nonfaulty Fault Containment Region must possess a digital clock signal which

is guaranteed to be within a known, given skew of every other nonfaulty Fault

Containment Region, even in the presence of Byzantine faults in the fault tolerant clocking

circuitry.

Why Required:

FCR Faults Independent

2-55

How Achieved:

Hardware Fault Tolerant Clock

Rule: Indenendent Power

The FCRs comprising a FTP are powered by the Diode-OR output on their own

channel's power and that of an adjacent channel, such that the failure of a single power

supply cannot result in a single point failure for the FTP.

FCR Faults Independent

Rule: Interchannel Links

The channels of a redundant FTP are connected by dedicated point-to-point

communication links. Interchannel links can be several meters long, and the channel

interface hardware is designed such that long links do not pose a problem in synchronizing

and communicating among di_ channels.

Physical Dispersion

Rule: Memorv-Maeeed I/0

Memory-mapped I/O is the conventional type of I/O configuration wherein external

devices interface direcdy with FTP buses and are addressed directly by the FTP. A CP or

IOP may have local dedicated I/O devices that can be accessed directly by the CP or IOP as

memory locations. The memory mapped I/O may consist of local switches, discretes,

A/Ds, D/As and interrupt driven devices. It is likely that I/O devices possessing a 5 ms

transport lag requirement will reside as memory-mapped devices.

To meet extremely low transport lag requirements, it is necessary to provide

dedicated I/O devices to the CP itself. That is, the CP would directly read the sensors

without going through an IOP or a local processor, perform the required control law

computation, and write directly to actuators.

Low Transport Lag

Rule: One Net Interface/Channel

A network has at most one interface per FTP channel, i.e. redundant root links to a

network from a FTP come from distinct channels. Thus the maximum number of network

interfaces connecting a FTP to a network is equal to the number of channels in the FTP.

2-56

Why Require_;

Reliable Contention Protocol

Simultaneous Device Access

Rule: Physical Disnersion

Channels of a FTP must be physically dispersed. Multiple FTPs may also be

physically dispersed, in which case they shall communicate over the redundant

InterComputer network.

FCR Faults Independent

How Achieved:

Interchannel Links

InterComputer Net

Rule: Shared CP/IOP Hardware

To reduce the overheads of fault tolerance, the data exchange hardware as well as

hardware that provides access to I/O and IC networks and a real time clock, are shared

between the CP and the IOP. This reduces the fault tolerance overhead by half as com-

pared to having separate exchange mechanisms for both the CP and the IOP.

2/kv_l aailr
Concurrent I/O, Computation

Low Fault Tolerance Overhead

Rule: Shared CPfIOP Memory

The lOP and CP exchange data through a shared memory. The IOP and CP have

independent operating systems that cooperate with each other. The IOP and CP actions are

therefore synchronized to some extent. To help achieve this synchronization in software, a

hardware feature enabling one processor to interrupt the other processor has been provided.

One way to implement the interrupt mechanism in hardware is to assert an interrupt when

some block of dual-port memory is written into. This would allow the processors the

flexibility of causing interrupts for a variety of reasons, the actual reason and message be-

ing transmitted through the contents of the shared memory.

3 a.v_gmailI
Concurrent I/O, Computation

Low I/O Net Transport Delay

2-57

]_ule: Symmetric CPflOP

The AIPS FTP architecture is symmetric from the viewpoint of the processors.

Since both the CP and IOP have access to all the external interfaces, the FTP can be

operated with both or only one processor per channel. Therefore, in AIPS applications that

do not have intensive I/O and/or IC communication, one processor per channel may

suffice. The shared bus controller card, along with the dedicated data exchange registers,

can be removed leaving only a single processor FTP with only the core data exchange

hardware.

In the AIPS it is possible to vary the number of IOS interfaces per FTP and per

channel to fit various processor and network redundancy levels and parallel and partitioned

networks. A given module or channel need not be fully populated. For example, a triplex

FTP may have only two I/O sequencers rather than three.

Why Required:.

Concurrent I/O, Computation

Modularity

Rule: Task Watehdo_ Timer

The watchdog timer is provided to increase fault coverage and to cause the

processor to fail-safe in case of hardware or software malfunctions. The watchdog timer

resets the processor and disables all of its outputs if the timer is not reset periodically.

Xflm&mmm
Software Fault Tolerance

Software Testability

Rule: Timer-based Interrunt

Each channel of a FTP possesses a hardware timer which is capable of interrupting

the channel upon the expiration of a programmable time interval. Because of tight

synchrony of the channels and clock deterministic behavior on the part of the FTP

channels, these interrupts will occur at very close to the same time in all channels and will

interrupt each channel at identical points in their replicated instruction streams.

CycleRate
Real Time Operation

System Real Time Clock

2-58

Appendix 2.D: I/O Net Specification

I/O Net Rules:

Chained Transactions

Circuit-Switched Nodes

I/O Sequencer

Rule: Chained Transactions

I/O requests are specific to one I/O service. They consist of a set of chains, at most

one per network within the service. All chains in an I/O request are started at the same

time. The I/O request is completed, and data becomes available to a user, when all chains

within the request are completed.

Chains allow efficient use of the communications bandwidth, but are only

applicable to a single network. Accordingly, the user must specify the transactions that will

form the chain, and the network on which they will be executed.

There are two chains of transactions used by the I/O network managers: a monitor

chain and a command chain. The monitor chain, used to monitor the status of all the nodes

in the network, must contain at least one transaction for each node in the network. The

command chain; used to send commands to any two nodes in the network, must contain at

least two transactions for each node in the network. Within the command chain, only two

transactions are selected for execution at any one time based on the nodes to which the

commands are addressed arid the order in which they are to be commanded. For the

monitor chain, each transaction corresponding to a node in the network is executed.

Low I/O Net Transport Delay

Rule: Circuit-Switched Nodes

The AIPS contains 5-ported nodes which join the various communications elements

into a network. These nodes provide more than the minimum number of links required to

form a single communication bus. Under control of a network manager (either I/O or IC),

ports on any given node can be activated or deactivated, allowing spare links can be

brought into service in response to a network failure or for testing.

In steady state, the communication path operates as if it were a conventional, time

division multiplex bus. It differs from a linear bus in that the data is routed by circuit

switched nodes along one of several possible paths. Each node in a properly configured,

fault free network receives transmissions on exactly one of its enabled ports and then

retransmits this data from all its other enabled ports. Since the nodes are circuit-switched,

the incoming data is not buffered. Hence, the network does not suffer form the

2-59

transmissiondelays associatedwith packet switched networks. The nodes provide a

richness of spare interconnections which can be brought into service after a hardware fault

or damage event occurs.

I/O Net

FO Network Growth/Repair

IC Network Growth/Repair

InterComputer Net

Low I/O Net Transport Delay

Rule: I/0 Sequencer

The Input Output Sequencer (IOS) is an autonomous asynchronous interface

between an AIPS Fault Tolerant Processor (FTP) and an I/O network. It resides on the

shared bus of the FTP and can be accessed by either the Computational Processor (CP) or

the I/O Processor (IOP). A major function of the IOS is to carry out detailed

communication with I/O devices on the network as well as the network nodes, off-loading

the FTP from lower level FO functions.

An IOS is capable of running chains of transactionson an I/O network and

collectingdatafrom sensorsatthe same time as the I/O Processor(lOP) isperforming its

variousfunctions,thusdecouplingI/O activityfrom processoractivity.

ff the system is configured with parallel networks, the processor can be processing

data from one network while a network repair chain is regrowing the faulty network.

Because it is a hardware device independent of and faster than the relatively slow

IOP, the IOS can to interface to very high speed buses.

Each channel of a redundant FTP may contain an IOS. These IOSs, if connected to

separate independent networks, can all be active simultaneously. However, if all of the

IOSs are connected to the same I/O network, then only one should be enabled to transmit at

a time.

Redundant network interfaces (i.e. root links to the same network) must have their

IOSs occupy corresponding address spaces within their respective channels. This facili-

tates dual ported memory testing and allows modifications to chain programs and chain data

to be made simultaneously to all redundant interfaces to thenetwork.

 flly.gmlamt
Low I/O Net Transport Delay

2-60

Appendix 2.E: IC Net Specification

IC Net Rules:

Circuit Switched Nodes

IC Interface Sequencer

Reliable Contention Protocol

Reliable 1(2 Communications

Triplex InterComputer Net

Rule: Circuit-Switched Nodes

In steady state, the communication path operates as if it were a conventional, time

division multiplex bus. It differs from a linear bus in that the data is routed by circuit

switched nodes along one of several possible paths. Each node in a properly configured,

fault free network receives transmissions on exactly one of its enabled ports and then

retransmits this data from all its other enabled ports. Since the nodes are circuit-switched,

the incoming data is not buffered. Hence, the network does not suffer form the

transmission delays associated with packet switched networks. The nodes provide a

richness of spare interconnections which can be brought into service after a hardware fault

or damage event occurs.

Why Reauired:

Low I/O Net Transport Delay

Rule: IC Intfrf_qe Seauencer

Communication among FTPs occurs over the three-layer InterComputer Network.

Access to the network is arbitrated by a distributed contention protocol. The communica-

tion and bus contention functions are performed by a dedicated InterComputer Interface Se-

quencer (ICIS) connected to each channel in a FTP.

Why Required:

Low 1(2 Net Delay

Rule: Reliable Contention Protocol

The AIPS architecture consists of a three layer circuit switched bus connected in a

fully cross-strapped manner to triplexes, duplexes and simplexes. FTPs, regardless of

their redundancy level, compete for all three layers of the network. The contention logic

must be able to resolve bus contention in a reliably robust manner. This means all FTPs

must come to a consensus about who owns the bus and in addition redundant channels of a

FTP must also reach a consensus as to whether or not they are contending for the bus. The

bus contention protocol does not occur in the FTP channels themselves but at a dedicated

ICIS controller connected to each channel in a FTP.

2-61

For access arbitration purposes, the triplex network is treated as a single entity.

FTP's, regardless of their redundancy level, compete for all three layers of the network. At

the end of the contention sequence one, and only one, FTP may have access to all three

layers of the network. Thus, ff a duplex FTP wins contention, it is given exclusive use of

all three network layers even though it can broadcast on only two of the three layers. No

effort is made to maximize the network bandwidth by providing simultaneous access to a

duplex FTP on two layers and a simplex FTP on the third layer, for example.

In distributed systems, the contention resolution must be fair and equitable to all

sites of like redundancy level. Over a period of time, for example, all triplex F_s should

have an equal chance of getting network access. Similarly, all duplexes should be served

equally well by the network as should all simplexes. However, the arbitration scheme

should also be flexible enough so that a low criticality function that may be assigned to run

on a triplex FTP should not hog the network. A triplex FTP should contend as a duplex or

simplex, if the function requesting the communication is of appropriate low priority.

Redundant channels within a FTP must come to a consensus as to whether or not

they are contending for the bus, and at the end of the contention sequence whether or not

they have won access to the bus. The bus contention protocol does not occur in the FTP

processors themselves, but in the dedicated Inter-Computer Interface Sequencer (ICIS)

electronics, which are appended to the FTP processors.

The AIPS contention protocol uses a modified form of the Laning Poll. It consists

of two parts, the redundancy contention sequence (RCS) and the priority contention

sequence (PCS). The RCS consists of 3 bits: S, T, and D (denoting Start, Triplex and

Duplex, respectively); and the PCS consists of three FTP priority bits followed by six FTP

ID bits. The objective of the redundancy contention sequence is to resolve contention

between the different levels of redundant elements contending for the bus (i.e. triplex,

duplex, and simplex). At the end of the RCS, all non-failed FTP's still contending should

be of the same redundancy level. The priority contention sequence resolves contention

among non-failed FTP's of the same redundancy level according to the priority and the ID

hits.

InterComputer Net

Ro.w.agJair,.v_e
One Net Interface/Ohannel

Rule: Reliable IC Communications

Communication between critical functions, which are resident in triplex FTPs, must

not be interrupted or corrupted by faults or lower criticality functions resident in duplex and

2-62

simplexFTPs. Triplex FI'Ps should be given access priority over all others. Similarly,

duplex FTPs should have priority over simplex ZIPs.

Why Required:

InterComputer Net

Byzantine Resilience

How Achieved:

Triplex InterComputer Net

Rule: Triolex lnterComnuter Net

The AIPS architecture consists of a three layer circuit switched bus connected in a

fully cross-strapped manner to triplexes, duplexes and simplexes. FTPs can receive data on

all three layers of the IC Network. The capability of a FTP to transmit on the network,

however, depends on the FTP redundancy level. Each FTP channel is enabled to write on

only one network layer. Triplex FTPs are provided the capability to transmit on all three

layers, duplex FTPs on only two of the three layers, and simplex FTPs on only a single

layer.

Reliable IC Communications

2-63

Appendix 2.F: System Services Software Specification

System Services Software Rules:

Error Traps

Fast_FDIR

FTP_FDIR

Heterogeneous Load Modules

I/O Net FDIR

I/O Network Manager

IC Comm Services

IC Network Manager

IC Source Congruency

Layered System Services

Partitioned Design

Privileged Mode

Synchronization Software

System FDIR

System Services on all FTPs

Transient Fault Tolerance

Rule: Error Traus

The AIPS FTP and System Software contains traps for abnormal operations such

as illegal opcodes, access violations, etc. If an Ada exception occurs at run time and the

user provides an exception handler, the handler will be executed. If no handler is provided,

the application task causing the error will be purged and not rescheduled.

Why Required:

Software Fault Tolerance

Rule: Fast FDIR

Fast_.FDIR must be periodically performed. Its execution frequency impacts usable

FTP throughput and FTP fault latency. Faster rates will reduce FTP fault latency but in-

crease FTP throughput overhead; slower rates will reduce FTP throughput overhead but in-

crease FTP fault latency. CSDL studies indicate that Fast__FDIR should be executed at the

fastest application rate.

Why Required:

FTP_FDIR

Low Fault Tolerance Overhead

2-64

Rule: FTP FDIR

FTP_FDIR has theresponsibilityfordetectingand isolatinghardware faultsin the

CPs, IOPs, and shared hardware. Itisresponsiblefor disablingoutputs of failedchan-

nel(s)through interlockhardware. Itlogsallfaultsand reportsstatustothe FTP statusre-

porter. Itis responsiblefor processor exception handling and downmoding/upmoding

hardware inresponse to configurationcommands from the system manager. Itisrespon-

siblefor transienthardware faultdetection. This redundancy management function is

transparenttotheapplicationprogrammer.

The reliabilityof theFTP isgreatlyenhanced ifchannels previouslydiagnosed as

faultybut cun'entlyoperatingwithout faultscan bc brought back intothe FTP configura-

tion.How a channel isrecovered depends on the type of failure,i.e.whether or not the

faulthas caused the channel tofallout of sync. A failurein the dataexchange hardware

does not dcsynchronize a channel,while other kinds of failuresdo. A FTP has recovered

from a fault,therefore,when thefailedchannelcan be resynchronized,or thefailedchannel

no longer shows errorsin the data exchange hardware. When a channel has bccn recov-

ered,the FTP must be rcconfiguredso thatthe recovered channel participatesin the FTP

operationand anotherfaultcan bc tolerated.

There are threemain processesinvolved in channel recovery. Fast_FDIR distin-

guishesbetween transientand hard failureswhen achannel recovery isbeing attempted in

order to balance competing system needs. Lost_Soul_Sync is responsible for

resynchronizingan unsynchronized channel,i.e.synchronizing itto the instructionlevel

and making its internal state the same as the duplex processors. Finally the Restart process

is invoked when a second fault or a common mode failure occurs. These faults result in a

fail-safe condition, which the AIPS FTP responds to with a system restart.

Why Required:

Common Mode Fault Tolerance

Diagnosability

Hardware/Software Partition

Latent Fault Detection

RM Independent of Application

Software Fault Tolerance

Transient Fault Tolerance

How Achieved:

Fast_FDIR

Rule: Heterogeneous Load Modules

The software design should treat the software for each FTP as a separate entity

from the link and load point of view. That is, a change in a software module that will exe-

2-65

cute on one FTP should not necessitate a recompilation and relink of the software for

another FTP.

Why Rc__uired:

Modularity

Rule: I/O Net FDIR

Failures in the network hardware can occur at any time, and it is necessary to

periodically collect the status of the network nodes to verify their continued proper

functioning. It is also necessary to be able to respond to communication errors detected

when the network is used by I/O Communication Services to collect data for application

programs. These tasks typically are scheduled to run at a much faster frequency than the

network manager task. The ability to respond to these errors greatly reduces the response

time for network repair.

The I/O Network repair procedure varies according to the fault. If the fault is

localized to a link, the network is repaired with spare link switching. If the fault is an

active node failure (babbler), then regrowth of the network is required. If the fault is a

node responding out of turn, then regrowth with testing is performed. In the case of

regrowth and regrowth with testing, the repair of the network may take the network offline

for more than one I/O cycle. Tune critical applications may need a parallel network to meet

their performance and reliability requirements.

I/O Network Manager

Rule: I/O Network Manager

The I/O Network manager software manipulates the large number of possible

interconnections between the circuit switched nodes in order to maximize the system's

overall reliability and survivability. It is responsible for fault detection and identification in

the network and for re,configuration around those faults.

The network manager is responsible for the following: initial growth of a network

establishing paths active to each functional node; periodic testing of each node in order to

determine if the node is accessible; periodic testing of spare links in the network to ensure

that they will be available when needed; and re-establishing connections to healthy nodes

which are disconnected as a result of a network fault or damage. For the I/O networks, er-

rors are detected using techniques such as time outs, illegal protocol, and cyclic redundancy

codes.

The software implementation of the I/O network manager must be dynamically

flexible, i.e. reconfigurable during run time. More specifically, two factors motivating the

2-66

designweretheneedto be able to start and stop the process on demand, and the ability to

manage a network topology which is to be determined at run time. To achieve this

flexibility, the FO network manager software is data driven. This dictates that the software

for the I/O network manger process consist of two major parts: a data store describing the

topology of the network to be managed and the coded algorithms to provide the redundancy

management. These parts would be united at run time.

Why Required:

Concurrent I/O, Computation

Diagnosability

I/O Net

I/O Network Growth/Repair

Low I/O Net Transport Delay

Low System Services Overhead

How Achieved:

I/O Net FDIR

Rule: IC Comm Services

The IC Communication Services provides local and distributed inter-function

communication as a transparent service to the application user. It provides synchronous

and asynchronous communication, performs error detection and source congruency on

inputs, records and reports IC communication errors to IC Network Managers. IC

communication can be done in either point-to-point or broadcast mode and is implemented

in each FTP.

IC Communication Services are responsible for maintaining knowledge of the

current physical location of functions and providing the necessary interfunction

communication. The mapping of functions to physical locations can change in response to

a function migration.

Why Required:

Function Migration

InterComputer Net

Low IC Net Delay

LOw System Services Overhead

How Achieved:

1{2 Source Congruency

Rule: IC Network Manager

The IC Network Manager is responsible for the fault detection, isolation and

re,configuration of the network. The AIPS system consists of three identical, independent

2-67

IC network layerswhich operatein paralleltoprovide for faultmasking and reliabilityof

communication. There isone network manager foreach network layer.These managers

do not need tobc co-residentand areresponsiblefordetectingand isolatinghardware faults

in IC nodes, links and the IC interfacesequencer. The network manager is also

responsibleforreconfiguringthe network layeraround any failedelements. This network

manager function is transparent to all application users of the network.

As part of deriving congruent data, the source congruency algorithms also detect

errors and perform some fault isolation. Faults are isolated to one or more of the following

modules: the sourceFrP channel,the I(2Network (one of threelayers),the sinkFrP ICIS

or the channel, and the root link. For further isolation, coordination with the local FTP

FDIR, the IC Network Manager and otherFTP FDIR routinesisrequire&

Why Required:

Diagnosability

IC Network Growth/Repair

InterComputer Net

Rule: IC Source Com, ruencv

A potential performance and reliability bottleneck in distributed systems may be the

intercomputer source congruency function. The channels of a receiving FTP can all

diverge if they do not use congruent inputs from IC sources. In order to remove this single

point failure, it is essential that all channels agree on the input data. The IC source

congruency algorithms provide this function. The overhead of executing this function,

especially in degraded modes, can be substantial if not properly partitioned into hardware,

firmware, and software. In the AIPS FTP, this function is performed by the hardware data

exchange mechanism.

As part of deriving congruent data from the IC Net for delivery to a FTP, the source

congruency algorithms also detect errors and perform some fault isolation. Faults are iso-

lated to one or more of the following modules: the source FTP channel, the IC Network

(one of three layers), the sink FTP ICIS or the channel, and the root link. For further iso-

lation, coordination with the local FTP FDIR, the IC Network Manager and other FTP

FDIR routines is required.

Why Required:

IC Comm Services

Rule: Layered System Services

The AIPS system software is organized as a series of layers, where each layer

provides services to the layers above through well-defined interfaces. Each layer is

allowed to use only services provided by lower layers in the hierarchy. This means that if

2-68

an interface is changed, it affects only the layers above. Adherence to this rule aids in

integration, testing, and exception handling. Exceptions are handled in the layer in which

they occur unless this becomes impossible, in which case the problem is passed to higher

layers for resolution.

System services arc layered so that application functions are not aware of the

multiplicity of processors, allowing expansion of processing capability without altering

application software. Since each layer hides implementation details from the other layers,

the impact of a change which does not alter the interface is confined to the affected layer.

Each layer is allowed to use only services provided by lower layers in the hierarchy. This

means that if an interface is changed, it affects only the layers above.

Why Required:

Adaptability

Conventional User Interface

Modularity

Software Testability

Rule: Partitioned Design

The software design in a FTP is partitioned such that the application software

interacts only minimally with the hardware fault management and containment mechanisms

resident in the various System Services building blocks.

]l.x.gsalailr
Software Fault Tolerance

]_ule: Privil¢ged Mode

Task execution on an AIPS FTP can occur in either privileged or non-privileged

mode.

Why Required:

Software Fault Tolerance

Rule: Synchronization Software

The synchronization software has two functions: initial synchronization and lost

soul synchronization. The synchronization routine is an assembly language module that

uses data exchange and fault-tolerant clock hardware to achieve tight processor

synchronism. The processors execute three sets of data exchanges and the other

instructions carefully timed to take a known number of Fault-Tolerant Clock (FTC) cycles.

Then they delay a different number of FTC cycles based on the configuration. The CPs

and IOPs must coordinate this activity since they used shared resources.

2-69

After the CPs and IOPs are in tight synchronism, each is responsible for aligning its

volatile memory and control registers: memory, dedicated data exchange registers and dedi-

cated error latches, processor registers, and interval timers. The CP is responsible for

aligning the shared hardware: the shared memory, the test port memory, the system timer,

the shared data exchange registers and shared error latches and the interprocessor (CP,

IOP) discretes.

The duration of bringing a lost channel back is driven by the amount of volatile

storage in the system. To assure identical states of redundant hardware channels, all

volatile hardware control registers, volatile memory and processor cache and registers must

be identical at system start up and the redundant channels must be synchronized to the

instruction level.

After a transient fault or repair event, it is necessary to bring the "lost" channel back

to synchronism with the others and to align all its volatile memory, hardware control

registers and processor cache with the on-line channels. If a CP finds it is alone, it must

notify his IOP that it is alone and then go to Lost_Soul_Sync to be picked up. If an IOP

finds it is alone, it must notify his CP that he is alone and then go to Lost_Soul_Sync to be

picked up.

Rule: System FDIR

System_FDIR is responsible for the collection of status from the IC Network Man-

agers, the I/O Network Managers, and the Local FI'P Redundancy Managers. It resolves

conflicting local fault isolation decisions, isolates unresolved faults, correlates transient

faults, and handles processing site failures.

Why Required:

Diagnosability

Rule: System Services on all FTPs

Each FTP has a access to a copy of the AIPS System Software Services executable

code, allowing any FTP to perform any System Service function at any given time.

 ay..eazla
Flexible Function Allocation

Function Migration

2-70

Rule: Transient Fault Tolerance

Transients faults are more likely than permanent or intermittent faults. Clearly, it is

not efficient to discard a channel because of a single error observance. Also, it is important

to determine if an error is caused by a transient or an intermittent fault. Therefore, when a

channel loses synchronism, the failure is initially handled in the same manner as a hard

fault. The effect of the fault is masked in real time and the channel is taken off line imme-

diately to prepare for a subsequent fault. Transient fault analysis then must determine if the

fault is a hard fault, a transient fault or an intermittent fault. The AIPS approach is to

maintain three state variables about each channel, the failure level or "health" of the chan-

nel, the retry time, and the retry backoff time. The health of each channel is dynamically

varied based on observed errors, increasing (health worsening) as errors occur and decay-

ing (health getting better) as time passes with no errors. The retry time is the amount of

time that transient fault detection waits before attempting to bring the failed channel back. It

also increases with each unsuccessful synchronization. The retry backoff time is the

amount of time between successive retry attempts, assuming the channel does not begin to

function again. When the retry time becomes zero, an attempt is made to resynchronize the

channel. If that attempt fails, the retry backoff time is doubled and the retry time is set to

the retry backoff time. A failure is deemed "hard" and a channel is permanently taken off

line if the failure level goes beyond a certain threshold or if the channel is not picked up

after a specified number of attempts. If the fault is transient, the channel will come back on

line and remain on line while its failure level decays. If the fault is "hard", its failure level

will cross the threshold or the channel will not be picked up by the operating channels in

the designated number of times over the designated period of time. If the fault is intermit-

tent and occurs frequently enough, it is treated as a hard fault and the channel is taken off

line. If is does not occur frequently enough, it will be mis-diagnosed as a transient and the

hardware will be brought back on line.

Why Required:

Mission Reliability

How Achieved:

FTP_FDIR

2-71

Appendix 2.G: Guidelines

List ofGuidelines:

Ada Language

ContentionforShared I/O

Copies in only 2f+1 FCRs

Extra Transactions

Function Prioritization

Hardware/Software Partition

I/O Crosstmpping

Latent Fault Detection

MultipleConncctions/IOP

MultipleIOSs/FTP

N-Version Software

Non-BR FaultTolerance

Simultaneous Device Access

Spare Link Cycling

Spare Links

Variable# Processors/Channel

Guideline: Ada Language

The AIPS isprogrammed intheAda language.

The AIPS software is modular. Ada helps achieve these goals with data

abstractions and packages. Ada's use of data abstractions helps produce readable code by

allowing programmers to manipulate data in a conceptual manner rather than a manner

specified by the machine's representation of the data. Ada also helps produce modular

code by encapsulating programs in constructs called packages, which introduce data

abstractions.

The foundation of the system software for AIPS is a real time, multi-tasking

operating system providing mechanisms for task scheduling, inter-task communication,

memory management and interrupt handling.

The AIPS operating system consists of the vendor supplied Ada Run Time System

(RTS) along with those extensions needed to implement the functions of task execution

management, memory management, intertask communications and software exception

handling. The extensions arc written in Ada with time critical sections done in assembly

language to reduce system overhead. The AIPS operating system resides on every IOP and

CP.

2-72

The use of Ada exception handlers and Ada types in the application tasks will

prevent many application software errors during run time because most software errors will

be detected at compile time or during preliminary testing. If an Ada exception occurs at run

time and the user provides an exception handler, the handler will be executed. If no

handler is provided, the application task causing the error will be purged and not

rescheduled.

The AIPS RTS is compatible with future Verdix releases with minimal changes to

interface routines. Verdix 5.5 with the AIPS RTS is based upon features of both Verdix

5.4 and 5.5. The AIPS RTS Kernel is tailored to the AIPS architecture thus eliminating

time consuming general purpose routines. Also, the AIPS RTS Kernel includes all AIPS

System Software.

Why Required:

Software Fault Avoidance

Software Fault Tolerance

SW Development Environment

Modularity

Guideline: Contention for Shared I/O

I/O Networks which are shared among a number of FTPs are contention networks,

i.e. each FTP subscriber must win a contention before utilizing the network, and the cost

of the contention (in time) is not significant. Consequently, users of I/O devices on the

shared buses (global and regional) must be prepared to accept some delays due to both

contention over use of the bus by two or more computers, and queueing delays due to re-

quests to use the same device concurrently (for devices that must be 'locked' for more than

one bus transmission duration).

Why Required:

Low I/O Net Transport Delay

Guideline: Conies in only 2f+l FCI_s

While the Byzantine Generals Problem requirements dictate that 3f+1 (four for f--l)

independent processes which are mapped to 3f+l independent FCRs be provided, a triplex

FTP implementation has three processes and six FCRs. This is done to minimize the

hardware overheads since of the six FCRs, only 2f+l (three) are full identical processor

channels while the other three are very simple communication repeaters or interstages.

These FCRs need only contain relatively simple hardware for participating in the f+l-

Round Source Congruency Input Distribution function. Thus the system reliability is in-

creased by providing an interstage design with less complex hardware than a processor.

2-73

Why Reouired:

3f+l FCRs

Cost Effectiveness

Guideline: Extra Transactions

The user may provide extra transactions in anticipation of the addition of new nodes

to the I/O network.

Variable Local I/O

Guideline: Function Prioritization

By prioritizing functions according to their criticality, it is possible to sustain

multiple failure and damage events and still continue to perform the most necessary

functions.

3E .y_gmuk
Graceful Degradation

Guideline: Hardware/Software Partition

Implementation of the FDIR scheme is partitioned into hardware and software. The

fault detection mechanisms are implemented in hardware while the isolation and reconfigu-

ration mechanisms are implemented in software. Tight synchronization coupled with bit-

for-bit comparison and voting of redundant FTP computations allows the FTP fault detec-

tion functions to be built in hardware.

For efficiency, fault detection and error masking are done in hardware and fault

isolation and re,configuration are done in software.

Why Required:

Low Fault Tolerance Overhead

FTP_FDIR

Hardware Data Exchange

Guideline: I/O Crosstragpin¢,

To support function migration, each network in the set may have corresponding

connections to more than one FTP. However, during normal operation, access to this set

of networks is reserved exclusively for one FTP.

2-74

Why Required:

Flexible Function Allocation

Function Migration

Guideline: Latent Fault Detection

Latent faults are those which currently exist but have not yet caused data exchange

errors or a channel to become unsynchronized.

It is important to detect latent faults before an error or active manifestation of these

faults occurs. Latent faults might become active at the same time as another fault, resulting

in the equivalent of a simultaneous double fault which the system is not guaranteed to han-

dle. In fact, the most probable scenario for such a double fault is when a latent fault is

lurking in the fault handling hardware or memory containing the fault handling software

and that hardware and software is called upon to handle another fault. Since this hardware

and software is normally only activated in response to the detection of an error, without self

tests a latent fault in this area would remain undetected until the occurrence of a second

fault. Self tests are designed to periodically exercise this hardware and software suffi-

ciently to weed out such latent faults before they can cause problems.

Similarly, it is necessary to uncover latent faults in the voter and error latch

hardware used as the primary means of fault detection. If an error latch does not report an

error when it occurs, in effect a simultaneous double fault has occurred, which may or may

not cause a system failure. The voter and error latch tests exercise and test those parts of

the voter hardware whose failure would not be detected during the normal course of

processing. The strategy is to apply all possible inputs to voter and error latch hardware to

assure that they are working correctly.

Other self tests provide for faster detection and finer resolution in the isolation of

latent faults. Typical on-line self tests include ROM checksums, RAM pattern sensitivity,

comparison of RAM contents across redundant channels, voter and error latch functional

tests, FTP data exchange transmitter and receiver tests, etc. The memory self tests exercise

all of memory (RAM and PROM) on both the shared bus and the shared bus. PROM is

tested by a sum check and a comparison of sums in redundant channels. RAM is tested by

pattern writing in order to discover pattern sensitive failures. RAM address lines are tested

at start up by the writing the address of each location to that location and then reading back

and checking those addresses after all RAM has been written. At run time the memory test

compares the RAM of the redundant channels on a word by word basis for quick detection

of bit failures. The fault-tolerant clock is tested at system startup, but not during run time.

Extensive self tests of memory, hardware voters and error latches, IOS, fault-

tolerant clock and system timers are done at system startup. A subset of these self tests are

executed on a time available basis at the lowest priority during normal system operation to

detect latent faults, particularly in seldom used hardware.

2-75

maimt
Mission Reliability

How Achieved:

FTP FDIR

Guideline: Multinle Conneetions/IOP

Although an I/O Network may not be redundant, a FTP may have more than one

connection to an FO Network through multiple IOPs.

 ax.Rmam
Vadable Local I/O

Guideline: Multinle IOSs/FTP

The number of I/O Networks which can be managed from a given processing site is

bounded by the number of physical I/O interfaces (IOSs) it has. For the engineering

breadboard system, this upper limit is six. In addition, a FTP channel may contain more

than one InS for redundancy.

Variable Local FO

Guideline: N-Version Software

In the/kIPS, software fault tolerance may be increased using an ZIP with attached

processors running N-Version software and a confidence voter decision algorithm. The

confidence voter has been developed in order to increase the reliability of N-Version soft-

ware. It uses the deterministic nature of software failures to identify coincident faults in

two versions.

The FTP/AP architecture addresses both hardware faults and software faults. Soft-

ware faulttoleranceisprovided by Attached Processorsrunning severalindependentlyde-

veloped programs in parallel to perform critical application functions. This FTP/AP archi-

tecune solves many of the problems associated with N-version software such as longer ex-

ecution times,inputcongruency, abortisolation,hardware/softwarefailure,and recovery

of failedversions.The confidencevoter can be used to increasereliabilityover a simple

majorityvoterindealingwiththe effectsof coincidentfaults.

Hardware/software fault isolation needs to be handled in any system that runs

multiple versions of software, since the recovery procedure differs depending on whether

the faultycomponent issoftwareor hardware. Because of limitedresources,itisimportant

not to discard both the hardware and the software components. Other operationalN-

2-76

version systems do not have the unique FrP/AP architecture and so, cannot isolate faults

between software and hardware. As a result, they discard both.

Based on the FTP/AP architecture, an algorithm has been developed and

implemented on the LaRC Quad FTP/AP to isolate faults between hardware and software.

If a disagreement occurs, the version in question is scheduled on all APs. After the results

of this isolation iteration are received by the FTP, the isolation algorithm does a hardware

bit-for-bit vote on the results. From this data, the fault is isolated to either hardware or

software.

Why Required:

Software Fault Tolerance

Guideline: Non-BR Fault Tolerance

The AIPS architectural approach does not preclude use of conventional, relatively

low-coverage techniques for fault isolation and latent fault detection. The judicious use of

these techniques does not reduce the Byzantine Resilience of the AIPS FTPs or IC

network.

These tests may include the following:

RAM Tests (pattern writing, scrubbing)

PROM Tests (sum check, sum comparison)

Shared memory scrub

OpcgKic tests

Reasonableness tests

Error detection and correction codes

Internal sparing (spare bit planes, etc.)

Why Required:

Availability

Software Fauk Tolerance

Guideline: Simultaneous Device Access

By connecting a FTP to redundant sensors and actuators via redundant networks,

simultaneous access to redundant I/O devices can be provided. This also results in a reduc-

tion of time skew between readings and an increased I/O network bandwidth. The user is

also provided with an uninterrupted flow of I/O data during periods of network reconfigu-

ration.

The use of chains and IOSs allows the application user access to redundant devices

in a nearly simultaneous fashion. If a faulty network is being repaired, the application is

2-77

able to access the redundant devices without any loss of cycle time while the faulty network

is being repaired.

Applications users specify I/O requests in an hierarchical manner. InitiaUy, the

desired Transactions are specified. Next, the Transactions that are sequentially executed as

a unit on one network are grouped to form a Chain. Finally, the Chains are grouped into

I/O Requests to allow simultaneous execution on parallel networks on an I/O service.

Chains on parallel networks can be used to allow corresponding devices on each

network to be accessed at approximately the same time. The degree of simultaneity which

can be achieved is determined by three factors: the rate at which the IOS samples its

Interface Command Register, the amount of time required to issue a Start Chain command,

and the reproducibility of the response time for corresponding external devices.

 a.x.Rr,gaizr
Low I/O Net Transport Delay

One Net Interface/Channel

Guideline: Snare Link Cvclin_

AU sPare links, including root links, are routinely cycled to determine whether or

not they are operating properly and can therefore be reliably called into service to

reconfigure the network after a failure of some active link. Cycling spare links provides

greater fault coverage than merely testing a link and then restoring the active link to service

since all parts are exercised for longer periods of time.

Guideline: Snare Links

The AIPS I/O and I(2Networks have a setof sparelinkswhich allow them tobc re-

configuredinresponse tofaultor damage events,renderingthem resistanttosuch failures

as a broken link,a transmitterorreceiverstuckhighor low,babbling network clement that

transmits without obeying the proper protocols, or an element which responds to messages

addressed to other elements.

! az.gr,aailr
I/O Net

InterComputer Net

2-78

Guideline: Variable Memory/Channel

The amount of memory resident in a channel of a FTP may be varied without

affecting the AIPS core fault tolerant concepts.

3Eazgr,gaizr
On-Line Memory

Guideline: Variable # Processors/Channel

An AIPS FTP is composed of a number of channels, each channel executing

bitwise identical instructions on bitwise identical data. Each channel may host one or more

processors. These processors may be added for the purpose of increasing the throughput

of the FTP, or as spares for the purpose of increasing the attrition resilience of the channel.

A typical AIPS FTP possesses two identical processors per channel, denoted the

Computational Processor (CP) and the I/O Processor (IOP). As their names suggest, the

former is typically intended to perform applications tasks while the latter is responsible for

I/O functions. The CP and IOP communicate over the Shared Bus using a variety of inter-

processor communications mechanisms. These mechanisms include the Shared Memory

where one processor may store data to be read by the other, and interprocessor interrupts

whereby one processor may interrupt the other.

Also resident on the Shared Bus are the FTP's I/O Sequencers which give it access

to I/O Network(s) and the IC Network. Both the CP and the IOP may access this

hardware, thus making the CP/IOP distinction somewhat arbitrary.

The CP and IOP in an AIPS FTP also share the FTP's interchannel data exchange

hardware, such that only one of the CP or IOP may access it at a time.

In addition to hosting a CP and IOP in a channel, an AIPS FTP may contain

attached processors (APs) connected to a bus interface resident on the Shared Bus. The

bus currently supported is the VMEbus. The VMEbus-compatible APs may be used for

increased throughput, memory, I/O, or FTP reliability.

Why Required:

Expandable Throughput

Graceful Degradation

2-79

2-80

3.0 FORMAL VERIFICATION OF INTERACTIVE CONSISTENCY

3.1 Introduction

Verification refers to the process of demonstrating that a system implementation

faithfully embodies its specification. When the process is mathematically rigorous, it is

called formal verification. Formal verification is of interest in ultrareliable systems because

of its potential to increase confidence in the system's correct implementation while reducing

the cost of verification through exhaustive testing. It is useful because its mathematical

rigor forces the system specifier to construct a complete, self-consistent, and unambiguous

statement of exactly what the system is supposed to do. Finally, it is of interest because it

can provide a consistent and traceable hierarchical framework for the specification, design,

implementation, and verification of complex ultrareliable digital systems.

The feasibility of formal specification and verification of digital circuitry has been

demonstrated by several researchers (e.g., [30]). However, routine utilization of the

technique is currently limited to formal verification experts. While the partial results

presented in this section were obtained relatively easily by non-experts in formal

verification, it is possible that formal specification and verification will continue to be so

esoteric and time-consuming that it will be cost-effective only for those functions which are

absolutely critical to the system's fault tolerance and which in addition remain relatively

unchanged from implementation to implementation.

The process of interactive consistency is precisely such a function. It is absolutely

central to the fault tolerance capabilities of the AIPS Fault Tolerant Processor (FTP), the

CSDL Fault Tolerant Parallel Processor (FTPP), the Fault Tolerant Multiprocessor

(FTMP), the Software Implemented Fault Tolerance (SIFT) computer, the Multicomputer

Architecture for Fault Tolerance (MAFT), and the Fault Tolerant Processor with Fault Tol-

erant Shared Memory (FTP/FTSM). Each of these architectures must perform interactive

consistency in one form or another, and it is one of the functions which remains relatively

unchanged over successive implementations.

The goal of this effort is to (1) formally specify the concept of interactive

consistency in EHDM [9], (2) develop and specify a more detailed finite-state machine

model in EHDM, (3) develop a circuit-level implementation, and (4) develop mathematical

mappings between each level of specification. This document presents the current status of

phase (1). In the current project, only item (1) has been completed. No major problems

were found or foreseen which would make the completion of steps (2), (3), or (4) unduly
difficult.

3.2 Approach

Interactive Consistency (IC) denotes the problem of distributing a datum from one

member of an unreliable distributed system to other members of that system. It is com-

3-1

P_ t_P.qJE BLAr4K NOT FILMED

monly performed when one channel of a redundant computer (e.g., an AIPS FTP) pos-

sesses a datum such as a sensor value and must disseminate that datum to the other chan-

nels of the redundant computer. Because it is a performance-critical function, it is imple-

mented in dedicated hardware in the AIPS FrP.

When this data distribution process is resilient to malicious or Byzantine failures, it

is called a Byzantine Resilient Interactive Consistency (BR IC) algorithm. A Byzantine Re-

silient IC algorithm must satisfy the Agreement and Validity conditions. Informally, the

Agreement condition specifies that nonfaulty recipients of the distributed datum must agree

on the datum's final value. The Validity condition specifies that, ff the initial source of the

datum is nonfaulty, then the value that all nonfaulty recipients agree upon is equal to that

sent by the source.

A starting point for the analysis is the classic "The Byzantine Generals Problem"

paper [31], where it is rigorously shown that 3m+l participants are required to achieve IC

in the presence of m malicious failures. Rigorously proven algorithms for BR IC are then

given by [31]. The approach of phase (1) of this work is to select one of these algorithms

and cast it into Revised Special.

It is important to point out that there is no need to consider faulty behavior at any

level of specification or implementation of the interactive consistency circuit since the

highest level specification (i.e., [31]) embodies all requirements for fault tolerance. It is

only necessary to show that the lower-level implementation meets the highest-level

specification, from which it follows that the interactive consistency function as a whole is

Byzantine Resilient.

3.3 Outline of Development

It will be shown that the theoretically demonstrable requirements for BR IC are met

by an interactive consistency circuit. These requirements and a verification technique for

each may be outlined as

gliiigIl2glB 3m+l participants in protocol.

Proof." We assert that this requirement can be verified by inspection.

lil2gil2e, aI 2m+l inter-participant connectivity.

_oof: We assert that this requirement can be verified by inspection.

Each participant resides in a separate fault containment re-

gion.

_oof: We define each FCR as an aggregate of circuitry possessing inde-

pendent power, electrical isolation, clocking, and physical isolation, and

demonstratethatthearchitecture meets these criteria. Given that this opera-

tive definition of an FCR is believed to be sufficient, then this requirement

can be verified by inspection

Fault containment regions execute a synchronous protocol.

Proof." This requirement is assumed to be met by assumption of a suitable

distributed Fault Tolerant Clock (FrC).

The participants correctly execute a BR IC algorithm.

This requirement is met by formal expression of a BR IC algorithm

and formal proof of correspondence between circuit implementation and

high-level spec.

A familiar physical arrangement of fault containment regions which is potentially

capable of meeting requirements 1, 2, 3, 4, and 5 is shown in Figure 3-1.

1 I - -._

Figure 3-1. Physical Arrangement of Fault Containment Regions

A more detailed figure showing a single FCR is given in Figure 3-2. This figure is

intended to illustrate how an FCR extends to the receivers of its transmissions, allowing an

FCR to deliver conflicting data to different receivers without getting into the somewhat

philosophical issue of whether links are FCRs unto themselves.

3.4 Assumptions

Several assumptions are made to simplify the approach.

1. The data paths between the FCRs are assumed to be 1 bit wide.

2. Synchronization is provided by an external fault tolerant clock which

will not be verified at present.

3. Each participant resides in an FCR each of which possesses independent

power, electrical isolation, clocking, and physical isolation.

" 3-3

4. The nonfaulty digital circuitry possesses zero _ and fall times, zero

setup and hold times, and hence no possibility of metastability.

Figure 3-2. Detail of a Single Fault Containment Region

3.5 Informal High-level Specification of a Byzantine Resilient Interactive

Consistency Algorithm

We choose algorithm OM(1) from [31]. This 1-BR IC algorithm is paraphrased

below, for m=l (# malicious faults to be tolerated at a time) and n--4 (# of participants in

BR IC algorithm; must be > 3re+l).

1. The datum source (say 4) sends its value to every other participant.

. For each recipient i, let vi be the value recipient i received from 4, or

else let vi be DEFAULT if i receives no value from 4. Each recipient i

then acts as a source to send vi to each other participant (other than the

original source4)1.

. For each i and each j _ i, let vii be the value recipient j received from

source i in step 2, let vij be equal to DEFAULT if recipient j received no

value from i, and let vjj be equal to vj. Each recipient j uses the value

majority (Vlj, v2j, v3j) to achieve interactive consistency.

fin practice each recipient i • {1, 2, 3} also delivers vi to the original source 4, which

also executes Step 3. This is a secondary technique to ensure that 4 also achieves IC in the

face of source outgoing link faults. It is probably correct, but since it is not formally proven

to be correct in [LSP82] it will not be specified here.

3-4

Algorithm OM makes three assumptions.

A1. Every message that is sent is delivered correctly. The intent of this

assumption is to prohibit an FCR from interfering with communica-

tions emanating from another FCR. An architecture with disjoint in-

ter-FCR data paths ensures this. Note that this assumption does not

prohibit a faulty FCR from sending conflicting messages to different

recipients.

A2. The receiver of a message knows who sent it. De-anthropomor-

phized, this assumption implies that the receiver of a datum can

identify the sender of the datum with certainty. Satisfaction of this

assumption is ensured by the physical arrangement of FCRs since

each FCR possesses a dedicated port from each other FCR.

A3. The absence of a message can be detected. Since we are assuming a

synchronous protocol, with FCR synchrony provided by an external

FTC, the absence of a message corresponds to failure of a faulty FCR

to provide a datum to a recipient on the appropriate phase of the

algorithm. Since the protocol is synchronous, a recipient is capable of

determining that at the end of a given phase no input has been
received.

The data flow for algorithm OM is illustrated in Figure 3-3. Note that in Step 2,

each participant j has renamed its value vj received on Step 1 to vii and performed a "virtual

transmission" of vj to itself. This is done for symmetry and is intended to have no effect

on the algorithm or proofs of correspondence.

l

21

Lie,..
V

22

"r;i--
m
m

vI......2_3

"3...2_3

Step 1 _t_ Step 2l-
Step 3 _1

-I

Figure 3-3. Interactive Consistency Data Flow

3-5

Thetaskof formally verifying thatAlgorithm OM is correctly implemented is now

reduced to proving that Steps 1, 2, and 3 are correctly implemented in the appropriate se-

quence. Specifically:

1. Prove that source 4 performs replication to participants 1, 2, and 3 in

Step 1.

2. Prove that recipients 1, 2, and 3 of the first broadcast perform repli-

cation to recipients 1, 2, and 3 in Step 2.

3. Prove that, in Step 3, participants 1, 2, and 3 perform the majority

function on the values received in Step 2.

If these functions are performed by the participants in the correct order then the

circuit has been formally proven to perform interactive consistency.

A timing diagram for this algorithm is depicted in Figure 3-4.

cloCk_

init

fsm activity

5" i!iii!_ii_!_iiiiii_iiiii!!_
i_. " :iii _J_!iiiii_

ii!ii!ii iliiiil i
3 _i!iiiii i]iiiii _ro _

iiiiii!!ili_:_ii_ii_iiiil_ " _iill

must be

ready here

data

available

here

Figure 3-4. Timing Diagram for Interactive Consistency

3.6 Formal High-level Specification of Algorithm OM

This Section contains a formal specification of the Algorithm OM. The

specification is written in the Revised Special language. First we perform some type

definitions.

3-6

(*Pre-amble

ic: MODULE

USING triples,

THEORY

boo13: TYPE is

boo14: TYPE is

boo19: TYPE is

statevector:

boilerplate*)

quads, quints

triple[bool, bool, bool]

quad[bool, bool, bool, bool]

triple[bool3, boo13, boo13]

TYPE is quint[bool, (*the

boo13, (*Step 1

boo19, (*Step

boo13, (*Step

boo14] (*init,

clock, inl: VAR bool

in3: VAR boo13

instate: VAR statevector

input datum*)

results*)

2 results*)

3 results*)

Stepl-3 enables*)

OM utilizesrepeatediterationsof a functionwhich replicatesan incoming dataele-

ment and providesrecipientswith a copy of thatdatum. The rep functionisintended to

representa faithful/restoringdatareplicator:itfaithfullyreplicatesthe incoming data and

deliversthevalue toitsdesignatedrecipients,and itrestoresa meaningless inputdatum

{TRUE, FALSE} (i.e.,a high-impedance or indeterminatevalue) to a defaultoutput •

{TRUE, FALSE} (itdoesn'tmatter which one),which isthen faithfullydeliveredto its

designatedrecipients.Note thatno attemptisneeded nor made to specifyfaultybehavior

of the repUcator.

(*rep: specification for a faithful/restoring data

tor*)

rep: function (bool -> boo13) ==

(LAMBDA inl -> boo13 :

IF((inl = t) or (inl = f)) THEN

make_triple(inl, inl, inl)

ELSE

make_triple(t, t, t) (*say*)

END (*IF*)

) (*end rep function definition*)

replica-

Step 3 of OM requires the use of a majority voter which votes three 1-bit inputs and

derivers one 1-bit output. Note that the voter as specified can produce an output _ {TRUE,

FALSE} if a majority of the inputs E {TRUE, FALSE}. This is probably not the case in a

real voter, which is restoring if nonfaulty.

(*vote3: specification for a 3-bit voter*)

3-7

vote3: function (boo13-> bool) --=

(LAMBDA in3 -> bool :

IF (first(in3) -- second(in3))

THEN first (in3)

ELSE IF (second(in3) = third(in3)).

THEN second (in3)

ELSE IF (third(in3) = first(in3))

THEN third (in3)

END (*IF*)

) (*end vote3 function definition*)

We are now ready to formally define the steps of algorithm OM. The

start ic fsm function starts the state vector, if the state machine has its init signal

asserted.

(*specification of state machine initialization*)

(*note that fsm will not execute subsequent inits until it

is returned to inittable state by Step 3*)

start ic fsm: function(bool, statevector -> statevector) ==

(LAMBDA clock, instate -> statevector :

IF((first(fifth(statevector)) = t)

and

(second(fifth(statevector)) = f)

and

(third (fifth (statevector)) = f)

and

(fourth (fifth(statevector)) = f)

and

(clock = t))

THEN

ELSE

make_quint (

first (instate) ,

second (instate) ,

third (instate) ,

fourth (instate) ,

make_quad(

f,

t,

f,

f)

(*disable init*)

(*enable Step i*)

(*disable Step 2*)

(*disable Step3*)

)(*end make quint*)

instate

3-8

END (*if*)

) (*end start ic fsm function definition*)

(*specification of Step 1 of Algorithm OM*)

stepl: function(bool, statevector -> statevector) ==

(LAMBDA clock, instate -> statevector :

IF ((second (fifth (statevector)) = t)

and

(clock = f))

THEN

make_quint(

first(instate),

rep(first(instate))

third(instate),

fourth(instate),

ELSE

instate

END (*IF*)

make_quad (

f,

f,

t,

f)

(*disable init*)

(*disable Step I*)

(*enable Step 2")

(*disable Step3*)

) (*end make_quint*)

)(*end stepl function definition*)

(*specification of Step 2 of Algorithm OM*)

step2: function(bool, statevector -> statevector) ==

(LAMBDA clock, instate -> statevector :

IF ((third(fifth(statevector)) = t)

and

(clock = t))

make_quint (

first (instate),

second (instate)

make_triple (

(

first (second (instate)),

first (rep(second(second(instate)))),

first (rep (third (second (instate))))

), (*first element of triple*)

(

second (rep (first (second(instate)))) ,

° 3-9

ELSE

second (second (instate)),

second (rep (third(second(instate))))

), (*second element of triple*)

(

third (rep (first (second(instate)))) ,

third (rep (second(second(instate)))),

third (second (instate))

)(*third element of triple*)

),

fourth(instate),

make_quad(

f, (*disable init*)

f, (*disable Step I*)

f, (*disable Step 2*)

t) (*enable Step3*)

) (*end make_quint*)

instate

END (*if*)

) (*end step2 function definition*)

(*specification of Step 3 of Algorithm OM*)

step3: function(bool, statevector -> statevector) ==

(LAMBDA clock, instate -> statevector :

IF((fourth(fifth(statevector)) = t)

and

(clock = f))

THEN

make_quint(

first(instate),

second(instate),

third(instate),

make_triple

(

vote3 (first (third(instate))) ,

vote3 (second (third (instate))),

vote3 (third (third (instate)))

,

make_quad(

f,

f,

f,

f)

(*disable init*)

(*disable Step i*)

(*disable Step 2*)

(*disable Step3*)

_. 3-10

)(*end make quint*)

ELSE

instate

END (*if*)

(*end step3 function definition*)

The function ic combines stepl, step2, and step3 to formally specify algo-

rithm OM.

(*high-level specification of Algorithm OM*)

ic: function(statevector -> statevector) ==

(LAMBDA instate -> statevector :

step3(f,

step2(t,

stepl(f,

start ic fsm(t, instate))))))

) (*end ic function definition*)

(*Post-amble boilerplate*)

END ic

3.7 Conclusions and Recommendations

This project comprises a first step in the formal specification and verification of the

interactive consistency function for ultrareliable digital computing systems. The phases of

a complete formal specification and verification effort are to (1) formally specify the

concept of interactive consistency, (2) develop and specify a detailed finite-state machine

model, (3) develop a circuit-level implementation, and (4) develop mathematical mappings

between each level of specification.

The current project, which comprised only phase (1) of the overall effort, was

carried out without unreasonable difficulty by non-experts in the field of formal

verification. No major problems were found or foreseen in this phase which would make

the completion of phases (2), (3), or (4) unduly difficult. Successful completion of these

phases would result in the availability of a verified and valuable building block for the

construction of ultrareliable digital systems.

3-11

3-12

4.0 AIPS FOR ALS ANALYTICAL MODELING

4.1 Introduction

Section 4 of this report describes reliability and performance analysis of the AIPS

architecture as applied to the Advanced Launch System (ALS) mission. The objective of

the reliability analysis is to state the reliability and availability requirements of the ALS

mission, construct reliability models of the AIPS FTP and InterComputer network,

construct a candidate AIPS configuration for the ALS, and evaluate its reliability and

availability using the analytical models. The objective of the requirements and performance

modeling effort is to determine the avionics system performance requirements for the ALS,

construct performance models of the AIPS building blocks, and from these def'me an AIPS

configuration for the ALS application. The performance is quantified using the

performance models in order to gain a degree of confidence that the selected configuration

of the AIPS building blocks will meet the ALS requirements.

4.2 Reliability Modeling

This section presents reliability models of the AIPS FTP and IC Network. The

context of the reliability modeling effort is an assumed ALS mission scenario described

below. Quantitative results axe presented in Section 4.2.3.

The assumed ALS mission scenario requirements for both FTP and IC Network

models axe as follows:

• The ALS must reside for 1 week unattended on the launch pad

• Launch will occur only if the avionics system is known to possess the capability

to mask a fault

• The ALS boost phase is of 10 minutes duration

• At least "Critical Mission Complement" (CMC) FTPs are needed to perform the

ALS avionics functions

• The avionics must possess a 95% launch availability (i.e., probability of fault

masking after one week of unattended operation)

• The avionics must possess at most a 10-5 unreliability of core avionics during the

boost

The system requirement of 95% availability was taken from the ALS System

Requirements Document (SRD). With these assumed ALS mission scenario requirements

in mind, we have created Markov and combinatorial models for the AIPS FTP suite and the

IC Network. First, a description of the FTP Markov model will be discussed followed by

4-1
1

3.

Pll_-"l[Nt_ PAGE BLANK NOT FILMED

a description of the IC Network Markov model. The last section will present the results

obtained from the Markov models.

The quantitative results generated by the models discussed below are based on

1986-vintage components and failure rates. The ALS configuration is assumed to use 1992

technology, which should enhance reliability for a given functionality.

4.2.1 FTP Markov Model

In order to quantify the reliability analysis of the FTP, the failure modes of the

system have been modeled as a series of Markov processes. In a Markov model of any

system, each possible state of the system is identified. The associated state transition rates

are also determined. However, before constructing the Markov model, it is necessary to

identify and define the various states of the system and to compute the transition rates from

one state to another. The estimation of failure rates can be made using reliability

projections or in some cases by directly measuring the failure rate of similar components or

modules. In order to do so, the architecture of the AIPS FTP must first be examined.

4.2.1.1 VLSI FTP Architecture

An FTP uses N modular hardware redundancy, where N is typically three or four.

Three is the minimum value of N required to enable majority voting to be used to mask er-

rors in real time, thereby eliminating the need for software rollbacks. When N is four, the

effects of a second error may be masked provided the source of the f'u'st error has been

previously eliminated, for example by reconfiguring the voters to ignore the input known to

be faulty.

Two FTPs were modeled for the ALS: a quadruply redundant and a triply

redundant FTP. The quad FTP consists of four sets (channels) of identical hardware. All

channels run the same processes concurrently, exchanging and comparing data to assure

each has a congruent copy. Each channel is divided into two Fault Containment Regions

(FCRs): a processor and an interstage (see Figure 4-1). A FCR is a module from which no

faults can propagate. Each FCR must be electrically and physically isolated from the others

and provide its own independent power and clock mechanisms. The triplex FTP is

identical to the quad FTP with the exception that there are only three sets of identical hard-

ware.

The architecture of the FTP consists of a quadruply redundant Motorola 68020 pro-

cessor. It contains two processors per channel with one processor devoted to computa-

tional functions and the other to Input/Output functions. The processor cards contain a

Motorola 68020 32-bit microprocessor, its floating point co-processor (68882), one

megabyte each of PROM and RAM memory, various other hardware elements typically

found on a single board computer, and a processor specific, 6000 gate equivalent, 2.0

micron CMOS Cortfigurable Gate Array (CGA).

4-2

VLSI FTP Fault Containment Regions (FCRs)

FCR 1

CPu1 cPu2

LocalMemory LocalMemo_/

VO LocaJVO FCR 5
FCR 1

SHARED BUS ACONTROLLER
Communicalor SSC
I_ Intedaol

FautlToWanl Clk
Shared

FCR 6

FCR 2 _'2

B
......

FCR 7

-"

$8C SBC

C

FCR 8

FCR 4

$BC $8C

D

Figure 4-1. Quadruplex Fault Tolerant Processor Architecture

The AIPS FTP is resilient to arbitrary failure modes on the part of FCRs. A quad

FTP provides 100% coverage of all first and second failures and an assumed 90% coverage

of all third failures, i.e., the architecture is tolerant of all first and second failures no matter

their severity and can incur the majority of all third failures without loss of system integrity.

A triplex FTP provides 100% coverage of first failures and an assumed 90% coverage of

all second failures.

4.2.1.2 FTP Failure Rates

The FTP processor and interstage failure rates were calculated by adding failure

rates of the individual devices constituting the processor and interstage which, in turn, were

determined from MIL-HDBK-217D. Failure rates of the processor, memory, and

interstage were determined based solely on failures of solid state devices and

interconnections. The data used in these calculations were gathered in the Entry Research

Vehicle (ERV) study [32], in which all devices were assumed to be of Space Quality and in

an airborne, uninhabited cargo environment. Failures of power supplies and backplanes

4-3

were not considered.Failure rates of the processor, memory, and interstage were based

upon failure rates of the following devices:

Quantity in Quantity in Failure Rate

Device Processor Interstage (per 106 hours)

Microprocessor 2 0 0.32

Floating-point CP 2 0 0.32

64X4 static RAM 32 0 6.0

128KX8 Bipolar ROM 8 0 2.6

VLSI Gate Array 3 0 0.31

74xxxxxx (worst case) 80 35 0.02

PALs 10 4 0.15

Drivers/Receivers 35 0 0.03

Connectors 4 1 0.16

Table 4-1. FTP Device Failure Rates (rOe = 3.0, _q = 0.5)

TQtal Failure Rates

Processor Failure Rate = 28 failures/106 hours. This processor failure rate does

not include that of the RAM.

Memory Failure Rate = 192 failures/106 hours. This memory failure rate is the

product of the number of RAM devices and the RAM device failure rate.

Interstage Failure Rate = 1.5 failures/106 hours.

For the ALS study, we are not assuming devices to be of Space Quality (S parts,

r_l = 0.5) or resident in an airborne, uninhabited cargo environment (re - 3.0). We are

instead assuming B quality level parts (_.q = 1.0) and a Ground, Fixed environment (re --

2.5) for the pad model and a Missile, Launch environment (re = 13) for the launch model.

To reflect these changes, we have modified the above failure rates with the above

multipliers for the processor, memory and interstage.

The fault recovery and reconfiguration rate, denoted by p, is 90,000/hr. It is

assumed that fault recovery requires a mean time of one FTP frame. This is a fairly

acctnatc estimate of the time between unambiguous fault manifestation and the setting of the

vote and clock masks by the FTP System Service Fast_FDIR. For a 25 Hz frame this rate

is given by:

1 frame = 40ms (25 Hz.)

1/40ms * 3600sec/hr = 90,000/hr.

4-4

4.2.1.3 FTP Reliability Modeling Assumptions:

For the FTP reliability modeling, the following assumptions are made.

• Triplex or quad FTPs with two CPUs per channel

• Failure of either CPU takes the entire channel down

• Failure of either processor or interstage takes the entire channel down

• 1 Mbyte RAM and 1 Mbyte ROM per channel

• All FCRs are independent

• On the pad intermittent faults are assumed to be permanent faults (This as-

sumption implies correct discrimination between transient, intermittent, and

permanent faults on the part of the FTP System Services. The large amount of

time available on the pad for fault diagnosis supports this assumption.)

• No recovery from transient faults is attempted during boost, that is, transients are

treated by the FTP as permanent faults

2Lp= Lp + Xt

• Transient faults occur 10 times more frequently than permanent faults

_.t = 10 * _,p

• Failure rates are constant

• Common mode failure rate is zero

• The Critical Mission Complement (CMC) varies from one to four

• The mission starts with CMC FTPs

• Processor and memory failures are independent

• Processor base failure rate _.p = 28e -6

(Xe = 3.0; S parts, _tq = 0.5)

• Memory (RAM) base failure rate 3.m = 192e -6

(Xe = 3.0; S parts, 7tq = 0.5)

• Interstage base failure rate _Li = 1.5e -6

(rte = 3.0; S parts, Xq = 0.5)

• Failure rate multipliers

pad: roe = 2.5 (Ground, Fixed); B parts, Xq =1.0

boost: Xe =13 (Missile, Launch); B parts, Xq = 1.0

4-5

• Constant reconfiguration rate p = 25 Hz for b°th permanent and transient faults

• Duplex coverage = 0.90

• Near-coincident faults result in catastrophic failure

As suggested at the "kick-off" meeting in November, 1988, both permanent faults

and transient faults are addressed separately. For this analysis, it is assumed that transient

faults occur 10 times more frequently than permanent faults; therefore, kt = 10 * kp.

4.2.1.4 AIPS FTP Markov Model

The states used for the FTP Markov model are as follows (refer to Figure 4-2).

The symbols used in the model are defined in Table 4-2. The failure rates used for the pad

and launch calculations are presented in Tables 4-3 and 4-4.

State 1 is a fully operational quad FTP, state 10 is a fully operational triplex FTP,

state 17 is a degraded but operational duplex FTP, state 24 is a triply-degraded simplex

FTP and only operational because of successful coverage by the FDIR, and state 25 is a

catastrophic failure mode (two failures before recovery, four failures, etc) and is not an

operational mode. States 1-10 are fault masking states. However, the system is not in a

robust state while in states 2-9. While in these states, the system is trying to recover from a

fault and is subject to failure due to near-coincident faults. Because of this, the system is

assumed to be launched only if known to be in fault masking states 1 (quad) or 10 (triplex).

4-6

&

Figure 4-2. FTP Markov Model

4-7

'I = Penn. Processor Failure Rate

LI = Trans. Processor Failure Rate

;Lip = Penn. Interstage Failure Rate

_'Iz - Trans. Interstage Failure Rate

;Lmp= Penn. Memory Failure Rate

_'ml - Trans. Memow Failure Rate

_'cmp" Perm. Common Mode Failure Rate

_'cmt" Trans. Common Mode Failure Rate

;Lore- Common Mode Failure Rate

ppp = Penn. Processor Reconfiguradon Rate

PI_ = Trans. Processor Reconflguratlon Rate

pip = Penn. Interatage Reconflguration Rate

p = Trans. Interstage Reconflgura_on Rate
II

p - Penn. Memory Reconfiguration Rate
mp

p - Trans. Memory Reconflguratlon Rate
ml

p = Trans. Common Mode Reconfiguration Rate
ant

¢ = Duplex Coverage
d

cm= Common Mode Coverage

Table 4.2. Definition of Symbols

_,pp = 46.67e-6

_'pt - 46.67e-5

_,ip = 2.5e-6

;Lit = 2.5e-5

_'mp = 3.2e-4

_mt = 3.2e-3

_cmp= 0

PAD

(per hour) ppp- 9.0e4

P pt - 9.0e4

P ip = 9.0e4

p = 9.0e4
it

p - 9.0e4
mp

p = 9.0e4
mt

p = 60
cmt

c = 0.90
d

C cm= 0

Table 4-3. Pad Failure Rates

4-8

LAUNCH

_,pp = 2.666e-3 (per hour) p pp= 9.0e4

_'pt = 0 P pt = 0

Zip = 1.43e-4 Pip - 9.0e4

_Lit == 0 p - 0
it

_Lmp = 1.82e-2 p = 9.0e4
mp

_Lmt = 0 p - 0
mt

Zcmp= 0 p = 0
cmt

_'cmt = 0
c = 0.90

d
_Lcm = 0

C cm = 0

Table 4-4. Launch Failure Rates

4.2.1.5 Modeling Approach

The approach used for the FTP reliability modeling is described below.

• Solve Markov model of a single FTP's failure behavior for 200 hours (,_ 1 week)

• Probability that any FTP is not fault masking is

l-(pl+ P10)CMC

• Use state vector at 200 hours to determine initial conditions for model of launch

behavior

Pi <= Pi/(Pl + Pl0), i = 1,10

Pi <= 0; otherwise

• Run same model for 10 minutes at missile launch failure rates

• Probability that any FTP suffers uncovered failure during launch is

1 (1 P25)CMC ,, CMC * P25

49

The resultsfrom th¢ reliability modeling efforts were plotted and can b¢ seen in

Figures 4-3 and 4-4. The results arc discussed in greater detail later in the report.

AVAILABILITY AFTER 1 WEEK *

100,

O
0o

ee
O
-- 80

m
< 7O
,.J

>

,(
6O

tu

o
te
_. 50

i

\

\

0 1 2 3 4 5

NUMBER OF FTPs REQUIRED FOR MISSION FUNCTIONS

TRIPLEX
QUAD

" Assuming 1986 vtnlage components and failure tales - ALS conflguralion will use 1992

Figure 4-3. Probability of fault Masking Capability after 1 Week

Unattended on Pad

4-10

t-

as
<
as
O

L

PROBABILITY OF CATASTROPHIC FTP LOSS
AT END OF LAUNCH

10-4

lO-5r

i

lO-6.

o

f

i

J

/

i,, Jl

I v

J

2 3 4 5

NUMBER OF FTPs REQUIRED FOR MISSION FUNCTIONS

Figure 4-4. Probability of Launch Loss at End of 10-Minute Boost

4.2.2 IC Network Markov Model

The IC Network initially modeled for the ALS consists of an unreconfigurable quad

redundant bus with two quad FTPs (see Figure 4-5). This IC Network is not the same IC

Network used for the AIPS. The engineering breadboard AIPS IC Network consists of

three identical Myers of a circuit switched reconfigurable network with each layer consisting

of five nodes. (See Figure 4-6). Our reason for modeling an unreconfigurable quad re-

dundant bus with two quad FTPs was simplicity. We decided to begin our IC Network

modeling efforts with two FTPs communicating with each other over a simplistic quad bus.

If this configuration was not found to meet the requirements, it was intended to modify the

unreconfigurable quad bus with the addition of nodes, adding reconfigurability and pre-

sumably reliability. Based on our analytical results, this was not found to be necessary.

4-11
• .

L

Figure 4-5. Unreconfigurable Quadruply Redundant Bus with Two Quad
FTPs

4-12

I/O NETWORK

15 NODE CONFIGURATION

Simplex I

FTP 4

R M LAYER Triplex
Inter-Computer

Network

N LAYER

FTP3 FTP2

Figure 4-6. AIPS Engineering Model Configuration

4-13

The behavior of a single FTP-FTP transmission path suffering passive failures was

first modeled. This meant calculating the probability that a sending FTP cannot communi-

cate with a receiving FTP over a fault masking path. This lead to the creation of the above

configuration, two FTPs communicating with each other over an unreconfigurable quad re-

dundant bus (see Figure 4-5). From Figure 4-5, one can see that the sending quad FTP

has fourtransmittersand fourreceivers.This isthe basisfrom which our Markov models

were developed.

However, for an AIPS configuration consisting of more than two FTPs, it is

necessary to calculate not only the probability that one sending FTP cannot communication

with one other receiving FTP but also the probability that any FTP cannot communicate

with any other FTP. In order to do this, we first assumed a critical mission complement

(number of FTPs) of three. Again, our reason for choosing three FTPs was for simplicity.

In addition, preliminary estimates of throughput requirements for the ALS mission indicate

that three FTPs are sufficient. However, we no longer can calculate the above probability

from only the Markov models. In addition to the results obtained from the Markov models,

we make use of a combinatorial formulation for failure of multiple inter-FTP

communication paths. It is important to note that inter-FTP communication path failure

probabilities are not in general mutually exclusive nor independent.

4.2.2.1 Assumptions

For the IC Network reliability modeling, the following assumptions were made.

• Transmitter, receiver, bus failures arc independent with constant fault arrival rates

• Component failure rates were obtained from MIL-HDBK-217D 1553 component

data, except for the Remote Terminal Interface (RTI) which was obtained from the
vendor

• Failure rate multipliers are the same as used for the FTP model

• Dual failure rate (pad and launch) phased mission analysis is used, as in the FTP
model

• Constant reconfiguration rate

• Transmitters arc enabled via Monitor Interlocks

• Transmitters fail uncontrollably active with probability fa = 0.10, passive or

controUably with probability 1-fa

• The transmitter failure rate is given by:

4-14

_'t- _RTI + _'D_ + 2*_conn

where _'RTI is the failure rate of the RTI, LD/R is the failure rate of the

driver/receiver pairs, and _onn is the failure rate of the connectors

• Receivers fail passive (a good assumption for fiber optic receivers)

• The receiver failure rate is given by:

X r = 4*_.RT I + 4*_.D/R + 8*_¢onn

• Duplex coverage = 0.50

• Critical Mission Complement (CMC) is 3

• On-pad recovery from transient communication faults assumed (This assumption

implies successful discrimination of transient communication faults from

intermittent or permanent communication faults via a retry strategy.)

• No recovery attempted for any communication faults during boost

• An unreconfigurable quad redundant bus is assumed as in Figure 4-5

• Each channel of the quad FTP can transmit data on only one layer yet receive data

on all four layers

4.2.2.2 IC Network Markov Models

The approach used for the reliability modeling of the IC Network was similar to that

used for the FTP. However, the Markov models created for the IC Network were devel-

oped using three separate models: one for pad phase, one for boost phase, and one for an

uncontrollable active transmitter or bus failure. The latter model is applicable to both the

pad and boost phases of the mission. These models are described below (refer to Figures

4-7, 4-8 and 4-9).

4.2.2.3 Pad Model

The pad model is a Markov model of two FTPs attempting to communicate over the

AIPS InterComputer network. Failure modes modeled by this model are passive receiver

and passive transmitter faults.

4-15

State 1 is a fully operational quad network. States 6, 7 and 20 arc fully operational

triplex networks. States 21-24 are degraded but operational duplex networks. They no

longer have fault masking capabilities. States 1-20 arc fault masking states. However, the

system is not in a robust state while in states 2-5 and 8-19. While in these states, the sys-

tem is trying to recover from a fault. For this reason, the system is only launched if in fault

masking states 1, 6, 7 or 20. Furthermore, the pad model does not model simultaneous

failures for the following reason. It is assumed that the avionics system of which the IC

Network is a part has a large amount of time for fault diagnosis and recovery while on the

pad. It follows that survival of simultaneous communication path failures is possible via a

suitable retry protocol. Hence, pad loss will primarily be due to attrition.

4.2.2.4 Launch Model

The launch model is also of of two FTPs attempting to communicate over the AIPS

InterComputer network. Again, failure modes modeled by this model are passive receiver

and passive transmitter faults.

State 1 is a fully operational quad network. States 6, 7 and 20 are fully operational

triplex networks. States 22-25 are degraded but operational duplex networks. State 30 is a

triply-degraded simplex network and operational because of good FDIR. State 31 is a

catastrophic failure mode. This state is not an operational mode. States 1-20 are fault

masking states. However, the system is not in a robust state while in states 2-5 and 8-19.

While in these states, the system is trying to recover from a fault and is subject to simulta-

neous failures. It is assumed that no recovery is attempted for any communication faults

during boost.

4.2.2.5 IC Bus Model

The IC Bus Markov model depicts the state of the IC Network undergoing active

transmitter or connector faults. The same model is used for both the pad and launch

phases; for the two phases the failure rates and initialization of the model are changed.

State 1 is a fully operational quad bus which is capable of providing fault masking

operations. State 2 has suffered from one failure and is a fully operational triplex bus also

capable of providing fault masking operations. State 3 has suffered two failures and is

now a degraded duplex bus. In this state, the bus no longer has fault masking capabilities.

State 4 is a triply-degraded simplex bus which is still operational because of good FDIR.

State 5 is bus loss.

4-16

!

Figure 4.7. Pad Model of the InterComputer Network Transmitters and

Receivers

4-17 ,.

'tp ="Transmitter Perm. Failure Rate

_.tt = Transmitter Trans. Failure Rate

_'rp = Receiver Perm. Failure Rate

rt = Receiver Trans, Failure Rate

Ptp = Transmitter Perm. Reconflguration Period

Pit = Transmitter Trans. Reconfiguration Period

Prp = Receiver Perm. Reconfiguration Period

Prt = Receiver Trans. Reconflguration Period

PAD Failure Rates: PAD Reconfiguration Rates:

, = 2.755e-6failures/hour Ptp = le3/hour

_,tt = 2.755e-5failures/hour Ptt= le3/hour

=1¢ ==

_'rp 1.102e-5 failures/hour Prp le3/hour

= = le3/hour
_, rt 1.102e-4 failures/hour P rt

Table 4-5. Pad Model Symbol Definition and Numerical Values

_'tp "Transmitter Perm. Failure Rate

kn . Transmitter Trans. Failure Rate

_'rp = Receiver Perm. Failure Rate

k rt - Receiver Trans. Failure Rate

Ptp = Transmitter Perm. Reconfiguration Period

Ptt = Transmitter Trans. ReconflgurationPeriod

pm = Receiver Perm. ReconflgurationPeriod

P rt = Receiver Trans. Reconflguration Period

LAUNCH Failure Rates: LAUNCH ReconfigurationRates:

)'tp = 1.433e-5failures/hour Ptp = l e3/hour

_,tt = 1.433e-4 failures/hour Pit = le3/hour

I I=

_'rp 5.73e.5 failures/hour Pm 1e3/hour

;Lrt = 5.73e-4failure_hour P rt " l e3/hour

Table 4-6. Launch Model Symbol Definition and Numerical Values

4-18

_J

t_...J

f_4 _4

_...J

-r

U
Z

t_

/

t'N

/

L

/
t

r_ _

t./ i_

Figure 4-8. Launch Model of the InterComputer Network Transmitters and
Receivers

4-19

®
®3

Ia.

_E
u._
fO'_"

A

® x
t__

u- a
Cq ""

2®

LI "r-

t_'U
It ¢0

oo

e_

fq

¢0

,q-

O
¢..

t_
...I

iI

"O
t_

Q.

¢'4
p,,
o.
p.,

II

oo
O_
tt%

II

e_

Figure 4-9. Model of the InterComputer Network: Active Failure Mode

4-20

4.2.2.6 Modeling Approach

The overall approach for reliability modeling of the pad and boost (launch) phases

of the IC Network is as follows.

• Solve pad Markov model of IC Network for 200 hours (- 1 week)

• Use state vector at 200 hours to determine initial conditions for model of launch

behavior

pi <= pi/(p I + p6 + p7 + p20), i - 1,6,7,20

Pi <= 0; otherwise

• Run boost model for 10 minutes at missile launch failure rates

This approach, with some modifications, was also used for the IC Bus calculations

Below are the modifications that were made.

• Solve pad Markov model of IC Bus for 200 hours (,- 1 week)

• Use state vector at 200 hours to determine initial conditions for model of launch

behavior

Pi <= Pi/(Pl + P2), i = 1,2

Pi <" 0; otherwise

• Run boost model for 10 minutes at missile launch failure rates

Below is a description of the approach used for each of the three separate Markov

models.

Pad Model (see Figure 4-7):

• Calculate the probability that a sending FTP cannot communicate with a receiving

FTP over a fault masking path:

P21 + P22 + P23 +P24

• Markov model of behavior of a single FTP-FTP transmission path suffering

passive failures

• Perform combinatorial calculation based on CMC

• Permanent and transient faults modeled: _.t = 10 * _p

4-21

• Only a 25% chance that a transmitter and receiver failure on the same layer will

occur and result in a fault masking path

Launch Model (see Figure 4-8):

• Probability of system loss is probability that any inter-FTP communication fault is

uncovered:

P31

• Expanded Markov model of pad

• 'Simultaneous' or double faults result in catastrophic failure

• Similar combinatorial formulation based on CMC

IC Bus Model (see Figure 4-9):

• Models an uncontrollable active transmitter or connector failure

• Only 10% of the failures of hardware are active (not passive) failures and result in

the loss of the bus

• Failure rate for bus:

ol = Xb + CMC**fa where _o = (CMC- 1)*_,conn

• Calculate the probability that the IC Bus does not provide communication over a

fault masking path:

P3 + P4 + P5

• Calculate the probability of IC Bus loss:

P5

• Results used for combinatorial calculations for the probability of that any FTP

cannot communicate with any other FTP over a fault masking path and the

probability of the IC Network launch loss based on CMC

4.2.2.7 Combinatorial Formulation

As previously stated, the reason for using a combinatorial formulation is to calculate

the probability that any FTP cannot communicate with any other FTP. For our analysis,

we are assuming a CIVIC of three. The three FTPs will be referred to as a, b and c.

4-22

Let P(U), (I,J)_ {a, b, c}X{a, b, c}, I;_J, denote the probability that FTP I cannot

send a message to FTP J over a fault masking path. Also let P(U, KL), (I,J,K,L)e {a, b,

c } X {a, b, c }X {a b, c } X { a b, c }, IceJ, K;eL, denote the probability that FTP I cannot send

a message to FTP J over a fault masking path and FTP K cannot send a message to FTP L

over a fault masking path. Note that P(IJ, KL) ;e P(IJ)P(KL). Define P(IJ, KL, NM) and

P(IJ, KL, NM, OP) similarly. Then Pnfm, the probability that any FTP cannot communi-

cate with some other over a fault masking path, is given by

Pnfm=_P(U)- X P(IJ, KL)
LJ L J,i_ L

+ _ P(U, KL, MN)
L J, K, 1..,M, N

- _ P(IJ, KL, MN, OP)
I, J, K. L, M, K (_ P

+ fifth order terms and higher

The pairwise terms P(U) are given directly from the Markov models. The

quadwise terms P(IJ, KL, NM, OP) may be neglected in an upperbound calculation; they

will be on the order of P(IJ) 4 anyway. An upperbound to Pnfm to fifth order is therefore

Pn_ < _"_P(IJ) + _ P(IJ, KL, MN)
I,J I, J, K, L M, N

A formulation for the triadwise terms ,_,P(U, KL, NM) in terms of the Markov

model outputs is desired. An upperbound to this quantity is determined as follows.

Figure 4-1O depicts the three FTPs as vertices in a directed graph. The edges of the

directed graph indicate that the FTP at the tail of the edge cannot send a message to the FTP

at the head of the edge. Thus, Figure 4.10 illustrates a configuration in which no FTP can

communicate with any other over fault masking paths.

C

Figure 4-10. Inter-FTP Communication Paths for CMC=3

4-23

With a CMC equal to thre_, there are choose(2*CMC, 3)t = 20 ways that all three

FTPs cannot communicate over fault masking paths (see Figure 4-II). From these twenty

triadwise loss configurations, a formulation for the probability that any two FTPs cannot

communicate over a fault masking path, plus the probability that all three FTPs cannot com-

municate over a fault masking path is

Pnfm< P(ab) + P(ac) + P(ba) + P(be) + P(ca) + P(cb)

+ choose(2*CMC, 3)P(IJ, KL, MN)

or

Pnfm < 2*CMC*Pab + choose(2*CMC, 3)*Pab 2

where Pab is the probability that a FTP cannot communicate with another over a fault

masking path.

In the above expression representing the summation of the triadwise joint terms, the

Pab term is squared and not cubed. It is fair to assume that Pab should be cubed based on

the fact of the three probabilities for each combination. There are two reasons why Pab is

squared and not cubed in this formulation. First, we are interested in an upperbound and

believe that we will achieve this limit by using Pab 2. Secondly, two of the probabilities are

usually dependent with the third probability being independent. Due to the fact that two of

the probabilities are dependent we can assume that since one will or won't happen, the

other will or won't happen with unity probability. This leads to representing the two de-

pendent probabilities as Pab instead of Pab 2. Now when taking account the third indepen-

dent probability, we obtain the term Pab 2.

This may be clarified through an example. Refer to Diagram 18 on Figure 4-11, in

which ZiP a has two non-fault masking incoming paths, one from b and the other from c,

and FTP C cannot receive messages over a fault masking path from FTP a. The expression

for the probability of occurrence of this event is P(ba, ca, ac) in the notation introduced

above. If the receiving end of FTP a is bad, we can assume that messages from neither

FTP b nor c will arrive. While this fault scenario may be caused by independent faults in

the transmission circuitry of FTPs banc c, the loss of messages transmitted from FTP b

and c can also be caused by faults in the receivers of FTP a. The latter fault scenario has a

higher probability of occurrence and thus, to ensure that an upper bound on this probability

is obtained, it is assumed to always be the cause of this failure mode. Thus the conditional

probability that FTP b cannot communicate with FTP a given that FTP c cannot communi-

cate with FTP a is assumed to be unity. At the same time, the loss of the fault masking

path from FTP a to FTP c is completely independent of faults in FTP a's receiver circuitry.

n!

t choose(n,m) = (n-re)Ira!

4-24

(1) (2) (3) (4)

_1 a il il

(s) (8) (7) (8)

i

(9) (10) (11) (12)

b/ "-

_ - c b_" =c b _ =c b _ =c

(13) (14) (15) (16)

b b b - b _ c

(17) (18) (19) (20)

Figure 4-11. Possible Communication Loss Configurations for 3 FTPs

4-25

Therefore we write the following,

P(ba, ca, ac) = P(ba, ca)P(ac)

= P(balca)P(ca)P(ac)

< l*P(ca)P(ac)

< P(ca)P(ac)

< Pab2

The combinatorial equation shown above only accounts for the probabilities

associated with the FTP failures, and not for the probabilities associated with the IC Bus

failures. The probabilities associated with the IC Bus must also be taken into

consideration, which therefore leads to the following equation:

Pnfm < 2*CMC*Pab + choose(2*CMC, 3)*Pab 2 + Pbus

This equation was used to calculate the probability that some FTP cannot commu-

nicate with some other FTP over a fault masking path, and the probability that any inter-

FTP communication fault is uncovered (launch loss).

The probability that some FTP cannot communicate with some other FTP over a

fault masking path is calculated using the following combinatorial equation:

Pnfm(pad) < 2*CMC*Pab + choose(2*CMC, 3)*Pab 2 + Pbusnfm

where Pab is the probability that a FFP cannot communicate with another FTP over a fault

masking path doe to passive transmitter and receiver faults and Pbusnfm is the probability

that the IC Bus does not permit communication over a fault masking path due to active

transmitter or connector faults.

The probability of launch loss is calculated using the following combinatorial

equation:

Pll< 2*CMC*Pab + choosc(2*CMC, 3)*Pab2 + Pbusll

where Pbusll is the probability of IC Bus loss.

4.2.3 Reliability Analysis Results

The assumed availabilityand reliabilityrequirementsfortheALS missionare

• 95% availability (probability of fault masking operation at launch),

• 10 -5 maximum unreliability of core avionics at end of launch.

Another statement of the first requirement is that the probability of not possessing

fault masking operation at launch (after 200 hours) must be less than 0.05. This will be

referred to as Pnfm. The third requirement will be referred to as the probability of launch

loss or Pll-

4-26

The results from both the quad and triplex FTP Markov model and the IC Network

model are shown below.

For the quad FTP, the results obtained arc shown below. These results show the

percent availability, probability of a not fault masking operation at launch (unavailability),

Pnfm, and the probability of launch loss, Pll, for varying levels of CMC.

Percent

CMC Availability Pnfm Pll

1 97.24% 2.76¢ "2 1.30¢ -6

2 94.56% 5.44¢-2 2.60¢-6

3 91.95% 8.05¢ .2 3.90¢-6

4 89.40% 1.06¢ -1 5.20¢-6

Table 4-7. Analytical Results for Quad FTP

The same type of results are shown below for the triplex FTP.

Percent

CIVIC Availability Pnfm PII

1 80.10% 1.99e'1 5.38e "6

2 64.20% 3.58e -1 1.08e-5

3 51.50% 4.85e -1 1.61e -5

4 41.20% 5.88e "1 2.15e -5

Table 4-8. Analytical Results for Triplex FTP

The above results for percent availability and probability of launch loss are

presented in Figures 4-3 and 4-4.

For the IC Network, the results obtained from the combinatorial analysis are shown

below. These results assume a CMC equal to 3. Shown first is the equation and the values

used to calculate Pnfin. These values are taken from the pad models.

Pnfm < 2*CMC*Pab + choose(2*CMC, 3)*Pab 2 + Pbusnfm

where CMC =3, Pab = 4.54e'5 and Pbusnfm = 4-433e-7. Pab is the result obtained

from the pad model, P21 + P22 + P23 + 1>24. Pbusnfm is the result obtained from the IC Bus

pad model, P3 + P4 + P5 •

Shown next is the equation and the values used to calculate PII. These values are

taken from the launch models.

Pll < 2*CMC*Pab + choose(2*CMC, 3)*Pab 2 + Pbusll

4-27

whereCMC =3, Pab = 1.85e "9 and Pbusll = 4.0¢-24. Pab is the result obtained

from the launch model, P31. PbusU is the result obtained from the IC Bus launch model, P5

These equations for the IC Network produced the following results:

Percent Availability Pnfm Pll

99.97% 2.73e "4 1.1 le "8

Table 4-9. Analytical Results for Quad IC Bus (CMC = 3)

4.2.4 Reliability Analysis Conclusions

The reliability analysis results indicate that a quad FTP and an unreconfigurable quad

redundant IC Network will meet the ALS availability and reliability requirements of

• 1 week unattended on pad

• 10 minute boost phase

• 95% availability (probability of fault masking) after 1 week

• 10 -5 probability of uncovered fault at end of boost or maximum unreliability of

core avionics at end of the launch

The analysis indicates that after 1 week (200 hours) unattended on the pad that the

percent availability for any CMC level of a quail FTP is above or very close to the 90%

range. The percent availability for any triplex FTP is substantially lower. Based on these

results, quad FTPs should be considered in the design of the ALS. For the IC Network,

the percent availability after 1 week unattended on the pad is close to 100%. This by far

satisfies the 95% availability requirement. Again one must realize that these results are

based on 1986 technology. We can expect the reliability for a given functionality to

increase with the use of 1992 technology.

We have assumed that if the FTP and I(2 Network are both capable of fault masking

operation launch will occur. For the boost phase both models were initialized with the state

vector obtained from the pad models after 200 hours of execution and executed at missile

launch failure rates. Other changes have been made to the IC Network boost Markov

model which have been discussed above. The boost phase was then modeled.

The results indicate that the AIPS system meets the 10 -5 maximum unreliability of

core avionics at the end of the launch for both the quad FTPs and IC Network. The triplex

F'I_s are marginal.

Both the FTP and IC Network reliability models are complete. They are now

available for ALS mission analysis using actual ALS requirements and projected

4-28

technologyfor ALS. The AIPS for ALS Architecture Synthesis Report [8] discusses the

ALS avionics architecture and presents the modeling results using the projected failure rates

for 1992 technology.

4.3 Requirements and Performance Modeling

The objective of the requirements and performance modeling effort is to determine

the avionics system performance requirements for the ALS, construct performance models

of the AIPS building blocks, and from these define an AIPS configuration for the ALS

application. The performance is quantified using the performance models in order to gain a

degree of confidence that the selected configuration of the AIPS building blocks will meet

the ALS requirements.

4.3.1 Performance Analysis Approach

The approach to the performance analysis of the AIPS for ALS is to obtain

representative ALS avionics requirements from an airframe contractor, construct a

performance model of the AIPS (which does not reflect the redundancy of the building

blocks other than in the performance dimension), transform the user-generated

requirements into requirements suitable for use in architecture synthesis, generate a

mapping of the avionics functions to a configuration of the AIPS building blocks, and

analyze the performance resulting from that mapping. Once the requirements are

determined and converted into a suitable format, this process will be iterative, with the

function allocation technique being iteratively coupled with a performance analysis model

to determine an architecture and allocation which meet the function requirements.

4.3.1.1 Architecture Synthesis Inputs

The inputs to the performance-related architecture synthesis process comprise the

avionics requirements, the AIPS building block knowledge base, which includes the

throughputs, bandwidths, overheads of the AIPS FTPs, IC network, I/O network, system

services, and technology projections for the anticipated technology freeze date.

4.3.1.2 Architecture Synthesis Outputs

The output of the process is a physical configuration of the AIPS for the ALS,

along with a performance model output which quantifies the performance of the

configuration when executing the ALS application. Components of this configuration

include the number of FTPs in the system, their throughput and memory capabilities, the

system services complement, the allocation of avionics functions to system building

blocks, the degree of I/O cross strapping, the IIO and IC Network topologies and

bandwidths. Quantitative estimates of system performance when executing the ALS

application are also outputs of this process. These performance measures include:

• Input and output latency

4-29

• Processing lag

• Transport lag

• Jitter

• Component utilization

• Queuesizes

4.3.2 Advanced Launch System (ALS) Functions

4.3.2.1 Processing Specifications

Each task to be executed by the AIPS is represented by a specification. The pa-

rameters which constitutethe specificationare categorizedintoprocessingrequirements,

memory requirements, and input/output and interfunction communication requirements.

To perform an accurate and meaningful synthesisof the avionics system, the

followingrequirementsareneeded foreach dispatchabletask:

•Frame rate

•Throughput (orinstructionsper execution)

•Throughput margin

•Processinglag

•Scheduling requirements(e.g.,precmptibleor nonpreemptible)

•Task executionorderdependencies

•Inter-functioncommunication requirements(bitsper iteration,latency)

Given thisdataitispossibletoconstructa distributedschedule for the task suite,

quantitativelyperform system sizing,and determine performance parameters using the

models describedinSection4.3.3.

4.3.2.2 I/O and Interfunction Communication Specifications

The applicationspecificationmust containdegree detailregardingthe Input/Output

and Interfunctioncommunication requirements. From theserequirements,the following

parameters must be determined:

• Amount (number of bits) of input data required to each Level-3 task for each

frame iteration, number of bits

•Source (I/Odeviceor producertask)of each inputdatum

• Maximum allowable latency and jitter for each input datum

• Amount (number of bits) of output data produced by each Level-3 task for each

frame iteration

4-30

• Destination (I/O device or consumer task) of each output datum

Maximum allowable latency and jitter for each output datum

4.3.3 AIPS Performance Model

4.3.3.1 Virtual Architecture Model

Given the existence of a set of requirements having the degree of detail outlined in

Section 4.3.2, a virtual architecture model of the AIPS can be constructed and used in

quantifying its performance under the application's processing and communication load.

The AIPS virtual architecture model used in this analysis is depicted in Figure 4-12. It

consists of a number of FTPs which are interconnected over the InterComputer (IC) Bus.

Each FTP may or may not be connected to local memory-mapped I/O and a regional or

global I/O Network. Regional I/O Networks may or may not be interconnected to facilitate

sharing of access to I/O devices for latency minimization or fault tolerance enhancement.

Sensors,

Actuators,
Communications

IIlIII
mlBIB

Sensors,

Actuators,
Communications

I/0Net

Sensors,
Actuators,

Communications

E
Memory-Mapped I/0

IC Bus

Figure 4-12. AIPS Virtual Architecture

The FTP virtual architecture used in this analysis is depicted in Figure 4-13. It is

described in detail in [8].

4-31

FFP1

_ Shined Bm

Figure 4-13. AIPS FTP Virtual Architecture

4.3.3.2 Schedule Model

We begin by expressing the behavior of a single AIPS FTP. The AIPS FTP

executes an iterativc, preemptive scheduling algorithm which is described below.

We assume that the FTP executes an frame-based scheduler at a 100 Hz major

frame rate. This results in a major frame duration of 10 milliseconds, with minor frames

consisting of time intervals of 10 millisecond multiples. Three minor frames are assumed:

50 Hz (20 millisecond flame), 25 Hz (40 millisecond frame), and 10 Hz (100 millisecond

frame). Other flames periods can be easily added to the model.

The existence of these frames results in a limited number of flame types: those

containing 100 Hz tasks, those containing 100 and 50 I-Iz tasks, those containing 100, 50,

and 25 Hz tasks, those containing 100, 50, and 10 Hz tasks, and those containing 100, 50,

25, and 10 I-Iz tasks (Figure 4-14). It is assumed that a schedule generation tool has been

used a priori to construct a static task schedule and I/O access chain for each frame type.

It is assumed that the FO and processing are pipelined, so that on frame n the IOP

prefetches input data for frame n+l and transmits output data from frame n-1.

4.3.3.3 Frame Model

The activityof the CP and IOP during a singleframe is described below and

depictedinGantt chartformat inFigure 4-15. The horizontalaxisof the figurerepresents

the passage of time, while the multiple axes of the figureare labeledaccording to the

component inuse ata given time.

4-32

CP

lOP

(100, SO,
2s, lO)

(100]

_-10 mse-

(100

(100
so)

(100,
so)

(100:

time

(lOO:

(100

(lOOi

(100,

so)

Figure 4-14. Schedule Model

On frame n, the CP executes the following sequence of operations:

Perform FDIR

Write output (actuator) data to Shared Memory

Read input (sensor, status) data from Shared Memory

Initiate frame n on IOP

Execute task suite for frame n

Perform self-tests

On 10 ms interrupt, begin frame n+l

On frame n, the IOP executes the following sequence:

Perform FDIR

Await I/O interrupt from CP

Read output (actuator) data from Shared Memory

Perform I/O activity for frame n+ 1

Write input (sensor, status) data to Shared Memory
Perform self-tests

Await frame interrupt from CP

4.3.3.4 ADAS Model

Based on these assumptions a hierarchical ADAS model of the FTP and application

was generated.

Figure 4-16 depicts the model of the scheduler. It is the highest hierarchical level of

the model. The node labeled "folk" represents the frame clock. It emits a token every 10

milliseconds to the nodes labeled "delay" and "CP_fdi." The token contains an integer

which indicates to the nodes of the graph and subgraphs the frame number currently being

executed and hence the parameters of that frame such as the number of application tasks,

the amount of data being transferred at each point, and other frame-specific parameters.

CP_fdi is a function executing on the CP which is responsible for testing its own health via

4-33

a voting operation and exercising the error detection capabilities of the FTP's data exchange

network. The delay node emits a token to the "IOP_fdi" node, which performs the same

function for the IOP. The delay is used to prevent the CP and IOP from accessing the ex-

change network at the same time. The CP_fcLi node emits a token to the "CP_SM" node

upon completion of its tests. The "CP_SM" node models the act of reacting writing output

data from the previous frame to the Shared Memory. When this process is complete, the

node "SM_CP" is fed a token. The SM_CP node models the reading of input data for the

current CP frame from the Shared Memory. Subsequently, the CP interrupts the IOP via

passing a token to the "CP_IOP_event" node to indicate to the IOP that it may begin output

activity for the current frame and input activity for the next frame. The same token is

passed to the "app_tsks" node to initiate the processing of the application tasks for the cur-

rent frame on the CP. Upon completion of the application tasks a token is passed to the

"done" node.

CP

SB

DX

UO
Net,
lOS

Application Task:

_.mt.;;;;;;.-.iilniiiiiii

Interrupl ix, post

Loadda ,_li __ Exchan !i|lllllllHIIIIIIll
I from SM t(_-£ 0 Req._!_ data fro_!ili| Self II

larOr--ms$1n ">::_ _::::':_1::::'I ,os ,os.o
":_<'::;";:":':":' ': ::_:":'":_::':_""::":_:;';'_:_._._.":'ii!!!i!_i_!_.ii_::::::: _::: t

t
:_: :':'_:__::':':_i_i._ii_ii_i._iiii_iiiiii_i!i_i|::-:_..-.:._._..-_._-_.%:.:_._..:._._.._....._._.:.:..-.:.×.,• <_.,,.-.I
"%:'4-": , """ • ..'_..$_:_.'::

._i_%lii_%iiiii::i::i#::::#:i!:_ii
..>:.:.:.:.:...:.:.:.:,:._:.:._:<.:.:¢.>;_.:,:,:

_!__,::_>.:_ :_!_:_]::_]:_i':':"';:":_"- :":'-:" ':+:':':';'_'_;:i_]:'_!_:?_:'::_i!i_!ii'._:i]i:
.._:..... _:...:.. +..:..:....:....:::..:....:.

:::

_::: _'_-_:<_ _::_:_::_._.::_.__._.__._.::::::::;i

|_i:i:_:i::::.::._::_.::_..::."__,Y:..::.:i_i!__!_.:.::__'_."._:_:_:_

Major Fmm_

Figure 4-15. FTP Frame Activity

4-34

Upon reception of the token from the CP_IOP_event node, the IOP executes the

"SM_IOS" node, which represents the reading of output data from the Shared Memory into

the I/O Sequencer (IOS). Upon completion of the SM_IOS node, the "net" node is acti-

vated. This node represents the use of the IOS and the I/O Network hardware to complete

the I/O chains which are designated for the current IOP frame. Following the I/O transac-

tions, the node "IOS_SM" is activated, which represents the transfer of input data from the

IOS to the Shared Memory for use by the CP in the subsequent frame. Upon completion

of the data transfer, a token is passed to the "done" node.

CP._fdi

delay

_lOP_event

IOPJdi J

SM_IOS

Figure 4-16. ADAS Model of Scheduler

At the next lower level of the ADAS model's hierarchy are several subgraphs. The

CP_SM, the SM_CP, and the app_tsks reflect the activities of the CP (Figure 4-17). The

SM_IOS (Figure 4-18) and the IOS_SM (Figure 4-19) subgraphs represent the activities of

the IOP. The net subgraph (Figure 4-20) represents the behavior of the UO network.

Three CP subgraphs were generated, corresponding to the CP_SM node, the

SM_CP node, and the app_tsks node in the highest-level graph. The CP_SM subgraph

4-35

models the transfer of dam from the Shared Memory to the CP. This activity requires

simultaneous access to the CP, the Shared Bus (SB), and the Shared Memory (SM). The

SM_CP subgraph models the reverse process, and requires identical hardware resources.

Each of these graphs are provided with input dam to indicate the amount of data to be

transferred (determined from the frame number and the tasks to be executed in that frame),

and hence the firing delay of each node in the subgraph.

The app_tsks node is provided with a token which indicates the frame number.

Based on this parameter, the node labelled "sched" determines which sequence of tasks are

to be executed, and iteratively selects output ports for token delivery. The sched node

feeds nodes labeled "switchin," which represent the time required to perform the context

switch function. The switchin nodes then deriver a token to the "task" nodes. There is one

task node for each schedulable task executing on the C1_, the firing delay of a particular task

node corresponds to its execution time. Following completion of a task, it delivers a token

to the "switchout" node, which again models the context switch time. Each switchout node

delivers a token to an "any" node which delivers a token in turn to the sched node. If fur-

ther tasks are to be executed in the frame, the sched node delivers a token to the appropriate

switchin node. Otherwise, it delivers a token to the "out" node, returning control to the

higher-level graph.

cP_su sM_cP

Figure 4-17. CP Subgraphs

Two IOP subgraphs were created, the "SM_IOS" subgraph and the "IOS_SM"

subgraph. The former models the process of transferring I/O chain data from the Shared

Memory to the IOS and the latter models the reverse process. The SM_IOS node begins

with the "IO Request ID" node, which represents the process of determining which I/O re-

4-36

quests are to be processed in the current frame. Upon completion of this function, the FTP

votes the I/0 data from the Shared Memory through the Data Exchange (DX) network to

the IOS. During this phase the Shared Memory, the Shared Bus, the IOP, the IOS, and the

Data Exchange network are simultaneously in use. The token feeding these nodes contains

a parameter describing the amount of data to be transferred and hence the firing delay of

each node.

SM_IOS

I I0 RequestlD I

Figure 4-18. IOP Subgraphs (1)

The IOS_SM subgraph represents the process of transferring chain result data from

the IOS to the Shared Memory, and consists of three sequential phases. The first phase,

represented by the "IOP_process" node, models the process of the IOP performing post

processing on the chain. This node delivers a token to a split which feeds the "SM," the

"SB," the "IOP," the "IOS," and the "DX" nodes. These nodes model the process of

transferring result data from the lOS through the voting circuitry of the Data Exchange net-

work to the Shared Memory. The outputs of these nodes feed a join which, when all its

input tokens have been received, emits tokens to a subsequent tier of nodes entitled "SM",

"SB", "IOP," and "IOS." This tier of nodes represents the simultaneous use of the SM,

SB, and IOP to model the process of the IOP receiving a signal from the IOS that the chain

is complete. The outputs of these nodes feed a join which, when all its input tokens have

been received, emits a token to the "out" node, returning control to the higher-level graph.

4-37

IOS_SM

I sMIIs.II,opll,osI,o.,

Figure 4-19. lOP Subgraphs (2)

The "net" subgraph models the process of executing the Input and Output process

for the given frame. The "in" node in this subgraph receives a token from the higher-level

scheduler graph; this token indicates the type of the current frame and consequently which

I]O chain to execute. Operation of this graph is similar to the "app_tsks" graph described

above. The "IOS Chain Mgmt" node models the operation of the I/O Sequencer (IOS),

which is responsible for iteratively emitting tokens to the "xmit_trans" and the "read_trans"

nodes, depending on the sequence of I/0 transactions to be executed for the current frame.

The IOS Chain Mgmt node emits exactly one token per firing; this token goes to either an

4-38 ..

xmiLtrans, a read_trans, or the "EOC" node. Each xmit_trans or read_wans node corre-

sponds to an I/O transaction which can be performed by the candidate architecture, and rep-

resents the sum of times required for the IOS to transmit the transaction to the I/O device,

the recipient node to respond, and the IOS to process the response. Refer to [2] for a more

detailed description of the I/O transaction process. Upon completion of the wansaction an

xmiLtrans or read_trans node emits a token to an "any" join node, which in turn provides a

token to the lOS Chain Mgmt node. If the IOS Chain Mgmt node determines that the chain

is complete for the current frame, it emits a token to the EOC node, which models the IOS'

End Of Chain processing. Upon completion of this processing, a token is emitted to the

"out" node, which signals that the chain is complete to the higher-level graph.

xmit_

net

lOS Chain Mgmt

xmitJrans readJrans read_tran,, EOC

Figure 4-20. I/O Network Subgraph

4.3.4 Requirements and Performance Modeling Results

Based on the progress made in this phase, several conclusions and

recommendations may be stated.

Fundamental numerical quantities needed for the detailed AIPS architectural

synthesis and performance evaluation have been identified. For each task, the following

parameters must be provided or otherwise generated: frame rate, throughput (or

instructions per execution), throughput margin, processing lag, scheduling requirements

(e.g., preemptible or nonpreemptible), task execution order dependencies, inter-function

communication requirements (bits per iteration, latency), code/data memory, code/data

memory margins, amount (number of bits) of input data required to each task for each

frame iteration, number of bits, source (I/O device or producer task) of each input datum,

maximum allowable latency and jitter for each input datum, amount (number of bits) of

output data produced by each task for each frame iteration, destination(s) (I/O device or

4-39

consumer task) of each output datum, and maximum allowable latency and jitter for each

output datum.

Preliminary ALS requirements were obtained from Martin Marietta Denver

Aerospace. A technique was developed to process their requirements to generate the

requisite parameters listed above. Partial conversion of the Martin Marietta requirements

into these parameters was completed. Close interaction between CSDL and Martin Marietta

during the requirements acquisition phase in our opinion enhanced obtaining an accurate

understanding of the avionics system's computational requirements, and should be

continued.

A two-level hierarchical ADAS model was constructed of a single FrP executing

frame-based iterative control system such as that envisioned for the ALS avionics. This

model is available for execution on a Sun workstation. However, the incompleteness of

the ALS requirements received to date did not permit its use for modelling the ALS func-

tions.

Complete requirementacquisitionand use of the ADAS models willyielda

quantitativedeterminationof performanceparameterssuch asinputand outputlatency,

processinglag,transportlag,controlloopjitter,component utilization,and queue sizes.

4.3.5 Requirements and Performance Modeling Recommendations

While much progresswas made in extractingALS requirementsfrom Martin

Marietta,additionalwork needstobe done toobtainavionicsrequirementsatthetask-level

granularity.Also,a mutuallymeaningfuldefinitionofI/O and Interfunctioncommunica-

tionrequirements needs to be determined and the relevant parameters quantified.

In the modeling effort, additional lower-level ADAS models of the detailed

workings of the FTP, IOS, and I/O network need to be constructed. The two-level model

presented herein need to be augmented by additional hierarchical levels. The model then

needs to be expanded to model multiple FTPs communicating over the InterComputer

network.

The task-granularity requirements and the multi-FTP ADAS models can then be

used for estimation of the AIPS' performance. Before this can be done, however,

allocation of the several ALS application functions to multiple FTPs must be performed.

This process is currently manual, and replete with tedium and trial-and-error.

Consequently, automated means of mapping the set of distributed functions to the FTPs

should be investigated. Key to this effort would be the development of an automated

interface between the mapping function and the ADAS evaluation tool.

4-40

5.0 EMPIRICAL TEST AND EVALUATION

5.1 Introduction

An important part of the AIPS knowledgebase is the performability characterization

of the AIPS architecture. For real time aerospace applications, not only the computer

performance but also the ability of the computer to deliver that performance in the presence

of failures is of paramount importance. Performability, then, refers to the range of

expected performance levels and their associated reliabilities or expectation probabilities.

The AIPS performability knowledgebase consists of analytical and empirical

relationships between three major domains: performance, reliability and architectural

parameters. There are many different figures of merit that can be used to measure the

performance and reliability of an architecture or to compare the performability of several

alternative architectures. The choice of which figures of merit to use depends on what is

important in the intended application of the architecture. A set of metrics that are

considered relevant for the broad range of mission- and safety-critical real time aerospace

applications, whose requirements AIPS is designed to fulfill, are described in Section 5.3.

A brief overview of the AIPS architecture and a set of parameters that characterize AIPS are

contained in Section 5.2.

The performability knowledgebase, when it is completed, can be used by a system

designer to configure the AIPS building blocks to meet a specific set of mission objectives

and requirements. It can then also be used to predict the system behavior (in terms of

performance, reliability, availability and other metrics) for a given hardware and software

implementation without actually building and testing a prototype. This should greatly

expedite the design and validation of mission- and safety-critical real time avionics systems.

Sections 5.4, 5.5 and 5.6 give an overview of three instantiations of the AIPS

building blocks - a Fault Tolerant Processor, a fault-and damage-tolerant Input/Output

Network, and a fault and damage tolerant inter-computer network - and their performability

data that has been obtained to date. These include the overheads of a real time Ada®

operating system, the redundancy management software and the interprocessor

communication software. Throughput benchmarks as well as certain reliability related

parameters such as fault detection and recovery time have been measured. Section 5.7

presents the impact of advanced software technology insertion. Finally, Section 5.8

concludes with a summary and status of the present work and future plans.

® Ada is a registered trade-mark of the Ada Joint Program Office.

5-1

5.2 AIPS Architectural Parameters

The goal of the Advanced Information Processing System is to develop an

objective knowledgebase for achieving validatable fault tolerant distributed architecture

designs applicable to a broad range of real time aerospace applications. Performance,

reliability and operational requirements for seven such applications ranging from

commercial transport aircraft to manned space platforms were surveyed and are

summarized in [16]. An architecture was synthesized to not only meet the specific

quantitative requirements of these applications but also possess a number of desirable

qualitative attributes. These include transparency of fault tolerance to software, low

overheads for redundancy management, expandability, graceful degradation and

validability.

AIPS is a multicomputer architecture composed of hardware and software building

blocks that can be configured to meet a broad range of application requirements. The

hardware building blocks are fault tolerant, general purpose computers, fault- and damage-

tolerant inter-computer (IC) and Input/Output (I/O) networks, and interfaces between the

networks and the general purpose computers. Figure 5-1 illustrates the AIPS hardware

building blocks. The general purpose computers designed for AIPS are termed Fault

Tolerant Processors (FTPs) and may be simplex, duplex, triplex, or quadruplex units

based on the reliability requirement of the application program being performed at the

processing site. The software building blocks are the major system services: local system

services, Input/Output system services, inter-computer communication services and the

system manager. This software provides the services necessary in a ia'aditional real time

computer such as task scheduling and dispatching, communication with sensors and

actuators, etc. The software also supplies the redundancy management services necessary

in a redundant computer and the services necessary in a distributed system such as inter-

function communication across processing sites, management of distributed redundancy,

management of networks, and migration of functions between processing sites. The AIPS

building blocks can be configured to provide an extremely wide range of performance and

reliability as discussed earlier in Section 2.

The system designer can match these to his/her specific application requirements by

choosing appropriate values for AIPS architectural parameters. For example, at the system

level, the number of processing sites, the FTP redundancy level across processing sites,

and the redundancy level of the IC Network are some of the parameters that are under the

system designer's control. Other parameters are a function of the hardware and software

technology insertion. Hardware technology insertion includes the raw CPU throughput,

mean time between failures (MTBF) of CPU, memory and other hardware components,

and raw bandwidth of I/O and IC networks. The software technology controls certain

5-2

basicparameterssuchastheAdaRendezvoustimewhich dependsamongotherthingson
theAdacompilertechnology.

FAULT TOLERANT PROCESSORS [
Simplex

Q_c_pl_x li

INTERCONNECTION
NETWORKS

INTERFACES

MESH BRAIDED REDUNDANT RING REDUNDANT
MESH BUSES RINGS

Input/Output Interfaces

Inter-Computer Interface Sequencer

Figure 5-1. AIPS Hardware Building Blocks

Table 5-1 summarizes some of the salient AIPS architectural parameters that

influence its performance and reliability. These parameters are divided along the AIPS

building blocks into four major sections: 1. System, 2. FTP-LOCal System Services, 3.

I/O Network - I/O System Services and 4. IC Network - IC Communication Services.

.

Table 5-1. AIPS ARCHITECTURAL PARAMETERS

System

1.1 Number of Processing Sites

1.2 FTP Redundancy Level Across Processing Sites

1.2.1 All Triplex Only

1.2.2 Simplex, Duplex, Triplex

1.2.3 Simplex and Duplex Only

1.3 IC Network Redundancy Level

1.3.1 Simplex

1.3.2 Duplex

1.3.3 Triplex

1.4 Homogeneity Across Processing Sites

1.4.1 Identical FTPs

5-3

.

1.4.2 Diverse FTPs

1.4.2.1 Heterogeneous ISAs

1.4.2.2 Heterogeneous System Service Implementation

FTP-LOCal System Services

2.1 FTP Redundancy Level

2.2 Processors Per Channel

2.3 Raw CPU Throughput

2.3.1 Clock Frequency

2.3.2 Data/Instruction Width

2.3.3 Memory Speed

2.3.4 Cache

2.3.5 MMU

2.3.6 FPU

2.4 Hard Failure Recovery Time Distribution (Failure Detection, Isolation and

Reconfiguration Distributions)

2.4.1 Fast FDIR Frequency & Coverage

2.4.2 Self Test Frequency & Coverage

2.4.3 Memory Scrub Frequency & Coverage

2.4.4 Watchdog Timer Coverage

2.4.5 Monitor-Interlock Coverage

2.5 Transient Failure Recovery Time Distribution (FDIR Distributions)

2.5.1 Transient FDIR Frequency & Coverage

2.5.2 Self Test Frequency & Coverage

2.5.3 Memory Scrub Frequency & Coverage

2.5.4 Lost Soul Synchronization Time

2.6 Common Mode Failure (CMF) Recovery Distribution (FDIR

Distributions)

2.6.1 Hardware Common Mode Failures

2.6.2 Redundancy Management (RM) CMF

2.6.3 Non-RM CMF

2.7 Redundancy Management (RM)

2.7.1

2.7.2

2.7.3

2.7.4

2.7.5

2.7.6

2.7.7

2.7.8

2.7.9

Fast FDIR Frequency

Fast FDIR Execution Time

Transient FDIR Frequency

Transient FDIR Execution Time

Self Test Frequency

Self Test Execution

Memory Scrub Frequency

Memory Scrub Execution Time

Common Mode Failure Recovery Frequency

5-4

.

2.8

2.9

2.9.2

IO Network-IO

3.1

3.2

3.3

3.4

2.7.10 CMF Recovery Execution Time

Byzantine Resilience Overheads

2.8.1 Data Exchange Time

2.8.1.1 Fault Tolerant Clock Frequency

2.8.1.2 Data Exchange Width

2.8.2 No. of Simplex Source Words (Inputs) From Application Reports

2.8.3 Input Frequency

Mean Time Between Failures (MTBFs)

2.9.1 FTP MTBF

2.9.1.1 CPU

2.9.1.2 Memory

2.9.1.3 Shared Bus Controller

2.9.1.4 IOS

2.9.1.5 ICIS

2.9.1.6 Monitor-Interlock

Ratio of Hard Failures to Transient Failures

System Services

Redundancy Management

3.1.1 Network FDIR Time Distribution

3.1.2 Initial Growth Time

3.1.3 Worst-Case In-Flight Reconfiguration Time

RM Overheads

3.2.1

3.2.2

3.2.3

3.2.4

3.2.5

3.2.6

3.2.7

3.2.8

3.2.9

MTBFs

3.3.1

3.3.2

3.3.3

Network

3.4.1

3.4.2

3.4.3

3.4.4

Number of Nodes

Node Transaction Time

Frequency of Node Polling

Spare Link Test Time

Number of Spare Links

Frequency of Spare Link Testing

Number of Ports Per Node

Network Topology

lOS Self Tests

Node

Port

Link

Performance

Contention Time

Node Response Time

DIU Response Time

Bus Bandwidth

5-5

.

3.4.5

3.4.6

3.4.7

3.4.8

3.4.9

Transaction Completion Time

Chain Completion Time

I/O Request Completion Time

Network Physical Link Layer Protocol

Network Data Link Layer Protocol

Inter-Computer Network-Inter-Computer Communication Services

The inter-computer details are analogous to the IO.

5.3 Performance and Reliability Metrics

The choice of which figures of merit to use to measure the performance and

reliability of an architecture or to compare the performability of several alternative

architectures depends on what is considered important in the intended application of the

architecture. As stated earlier, the performance, reliability and operational requirements for

seven intended applications of AIPS were surveyed and analyzed [16]. A set of metrics

have been chosen that are considered relevant for the broad range of mission and safety-

critical real time requirements represented by these seven applications.

As with the architectural parameters discussed in the previous action, the metrics are

partitioned and organized along the AIPS building block lines. Tables 5-2 and 5-3

summarize the salient performance and reliability metrics, respectively. At the system

level, maximum useful throughput, communication latency between functions executing in

different processing sites, and total useful I/O bandwidth are some of the important

performance metrics. Throughput and memory resources devoted to various system

services are also important since they measure the efficiency of the architecture. At each

processing site, in addition to useful throughput and various overheads, there are two

important metrics that measure the real time and fault tolerance related performance. From

the real time viewpoint, the jitter in starting time of successive iterations of periodic tasks,

the delay in starting aperiodic tasks and the transport lag between reading sensors and

sending the corresponding actuator commands are important. From a fault tolerance

viewpoint, the time to distribute data from one processor to other redundant processors in

the FTP and to vote the outputs of redundant processors are important metrics. These last

two metrics are not specific to the FTP but are equally applicable to any fault tolerant

computer that uses redundant processors. As a matter of fact, all the metrics discussed here

are quite general and apply to any distributed real time fault tolerant architecture.

Some of the metrics depend not only on the architecture but also on the application

workload. For example, in order to compute the overheads of the Ada Run Time System

and task scheduling, it is necessary to know the number of tasks to be scheduled in each

frame, their iteration frequency and so on. The performance metrics for the AIPS FTP, the

I/O Network, and the IC Network discussed in the next three sections have been evaluated

5-6

in thecontextof a specificworkloadthat is consideredrepresentativeof real time flight
controlapplications.

Theperformancemetricsfor theinput/outputandtheinter-computercommunication

are also listed in Table 5-2. In the context of reliability, the figures of merit of interest at

the system level are mission success probability, mean time to repair, and maximum

function reliability and availability. Some representative measures of merit, partitioned

along the three AIPS building blocks, are also listed in Table 5-3.

I. System

.

Table 5-2. Performance Metrics

1.1 Max Useful Throughput

1.2 Throughput as a function of # Processing Sites

1.3 Inter-function communication delay (non-colocated)

1.4 Function Migration Latency

1.5 Total I/O Bandwidth

1.6 System FDIR Overheads (Throughput, Memory)

1.7 Non-FDIR System Services Overheads (Throughput, Memory)

FTP-Local System Services

2.1 Useful Throughput

2.1.1 CP

2.1.2 IOP

Overheads (CP Throughput & Memory, IOP Throughput & Memory)2.2

2.3

2.4

2.5

2.2.1 Ada Run Time System

2.2.2 Scheduler

2.2.3 Redundancy Management

2.2.4 Time Manager

IOP-CP Communication

2.3.1 Shared Memory Time

2.3.2 Interrupt Time

Data Exchange Tune

2.4.1 Simplex Source Broadcast

2.4.1.1 Dedicated

2.4.1.2 Shared

2.4.2 Voted Exchange

2.4.2.1 Dedicated

2.4.2.2 Shared

Periodic Tasks

2.5.1 Jitter

2.5.2 Transport Lag

5-7

.

=

2.6 Aperiodic Tasks

2.6.1 Start Delay

I/O System Services

3.1 Memory Mapped I/O

3.1.1 Sensor Read

3.2

Latency

3.1.1.1 Private Bus

3.1.1.2 Shared Bus

Network I/O

3.2.1 Dedicated Network

3.2.1.1 Sensor Read Time

3.2.1.1.1 IOP Read Time

3.2.1.1.2 IOP-CP Latency

3.2.1.2 I/O Redundancy Management Overhead

3.2.1.2.1 Network Manager

3.2.1.2.2 IOS Self Tests

3.2.1.2.3 Maintenance & Repair Routines

3.2.1.3 Max Useful Bandwidth

3.2.2 Shared Network

3.2.2.1 Sensor Read Time

3.2.2.2 I/O Redundancy Management Overhead

3.2.2.3 Max Useful Bandwidth

3.2.3 Max # Nodes/Network

3.2.4 # DIUS/Node

Inter-Computer Communication Services

4.1 Useful Bandwidth

4.2 Inter-Function Communication

4.2.1 Broadcast (one to all) Latency

4.2.2 Multicast (one to many) Latency

4.2.3 One-to-one Latency

4.2.3.1 Mailbox

4.2.3.2 With Acknowledgement

4.2.4 overheads

4.3 System Time Manager

4.3.1 Synchronization Granularity

4.3.2 Synchronization Accuracy

4.3.3 Overheads

4.4 Max # Nodes Per Layer

4.5 Byzantine Resiliency overheads

4.5.1 All Triplex Configuration

4.5.1.1 Reduce Input Data to Congruent Value

5-8

4.6

4.7

4.5.1.2 Failure Detection & Isolation

4.5.2 Mixed Redundancy Configuration

: 4.5.2.1 Reduce Input Data to Congruent Value

4.5.2.2 Failure Detection & Isolation

Network Management Overheads

4.6.1 IC Network Manager

4.6.2 ICIS Self Tests

4.6.3 Network Maintenance & Repair

ISO Layer Latency & Overheads

4.7.1 Physical Link Layer

4.7.2 Data Link Layer

4.7.3 Network Layer

4.7.4 Transport Layer

.

.

.

.

4.1

4.2

4.3
4.4

Table 5-3. Reliability Metrics

System

1.1 Max. Function Reliability (time)
1.2 Max. Function Availability
1.3 Mission Success Probability
1.4 Mean Time To Repair (MTI'R)
FTP-Local System Services

2.1 FTP Failure Probability (time)
2.1.1 Catastrophic Failure
2.1.2 Degraded Mode

2.1.3 Connectivity to IC Network (Failure Prob.)
2.1.4 Connectivity to I/O Network(s) (Failure Prob.)

2.2 FrP M'ITR

!/O System Services

3.1 Prob. of Accessing DIU
3.2 Prob. of Accessing Network
3.3 Prob. of Accessing Redundant Networks
3.4 Network Outage

3.4.1 Prob. of Outage
3.4.2 Prob. Distribution of Outage Time

Inter-Computer Communication Services

Prob. of N Critical Functions Communicating
4.1.1 Fault Masking Communication

4.1.2 Degraded Mode Communication (Not Fault Masking)
4.1.3 Loss of Communication

Prob. of a Critical Function and a Non-Critical Function Communicating
Prob. of Two Non-Critical Functions Communicating
Inter-Computer Network Outage
4.4.1 Prob. of Outage

4.4.2 Max. Time of Outage or Prob. Distribution of Outage Time

5-9

5.4 FTP Empirical Knowledgebase

5.4.1 FTP Architecture and H/W and S/W Implementation Technology

The Fault-Tolerant Processor (FTP) consists of a variable number of redundant

processing channels depending on the reliability requirements of the application. The AIPS

engineering model FTP is intended to be operated primarily as a triplex, but a single

channel can also be used for non-critical operations as a simplex computer.

Each channel of an FTP consists of three sections: a computational section, an

input/output section, and the resources shared between them. The first section contains a

Computational Processor (CP), memory, and interval timers. The second section contains

an Input/Output Processor (IOP), memory, and interval timers. The shared resources

include shared memory, data exchange hardware, a system timer, a monitor interlock, a

fault tolerant clock, and external interface hardware. The redundant processors are tightly

synchronized using the fault-tolerant clock. Data is exchanged among redundant channels

on point-to-point links. The data exchange hardware also performs the bit-for-bit voting,

fault detection and masking functions in a manner that satisfies all the requirements to

protect the FTP from Byzantine failures [33].

A functional view of one channel of an AIPS FTP is shown in Figure 5-2. The CP

and IOP are identical, conventional processor architectures. Interval timers are used for

scheduling tasks and maintaining time-out limits on applications tasks (task watchdog

timers). A hardware watchdog timer is provided to increase fault coverage and to cause a

processor to fail-safe in case of hardware or software malfunctions. This timer resets the

processor and disables all of its outputs, if it is not reset pcriodicaUy. The watchdog timer

is implemented independently of the basic processor timing circuitry. A monitor and

interlock circuit in each channel provides the capability to disable the outputs of faulty

processors. Any two correctly operating processors in a triplex FTP can disable the

outputs of the third failed processor through this interlock mechanism. A processor that is

failed active is thus prevented from transmitting erroneous data or commands on I/O

networks, IC networks, and local I/O devices.

The CP and lOP share resources through a bus that can be accessed by either

processor. These shared resources include memory; a system timer, the fault tolerant clock;

the monitor interlock, the interchannel data exchange and voting circuits; interfaces to one

or more I/0 networks; and interfaces to the IC network. The fault tolerant clock monitors

and adjusts the individual SYSCLKs of the redundant processors so that they remain

synchronized at the instruction level. The system timer is derived from the fault tolerant

clock and will serve as a real-time clock.

5-10

All of the AIPS systemsoftwarehasbeenwritten in Ada. The samesoftware
executesonaredundantFTPason asimplexchannelandapplicationcodeis writtenasif it
wereto operateonasimplexcomputer. All redundantprocessorshaveidentical software
andexecuteidenticalinstructionsatexactlythesametime. TheIOP andCPcommunicate
throughthe sharedmemory. The IOP andCP haveindependentoperatingsystemsthat
cooperateto assurethatthedatafrom inputdevicesis madeavailableto the applications
programsrunningin theCPin a timelyandorderly fashion. Similarly, thetwo processors
cooperateon the outgoing informationso that the outputdevicesreceivecommandsat
appropriatetimes. HencetheCPandIOP actionsmustbesynchronizedto someextent.
To help achievethis synchronizationin software,a hardwarefeaturehasbeenprovided
which enablesoneprocessorto interrupt theother. By writing to a reservedaddressin
sharedmemorytheCPcaninterrupttheIOP andby writing to anotherreservedlocationthe
IOP caninterrupttheCP. Different meaningsareassignedto this interruptby leaving an
eventcodein someotherpredefinedpartof thesharedmemory,beforetheinter-processor
interruptis asserted.

For routine flow of information in both directions, the sharedmemory is used
without interruptsbut with suitablelockingsemaphoresto passconsistentdatasets.The
interruptscanbeusedto synchronizethisactivity aswell asto passtime critical datathat
must meet tight responsetime requirements. In order to assuredataconsistency,it is
necessarythatwhile onesideis updatinga blockof datatheothersidedoesnot accessthat
blockof data. This hasbeenimplementedusingsoftwaresemaphores.Hardwaresupport
for semaphoresisprovidedin theform of thetestandsetinstruction.

Thearchitecturalapproachdescribed above provides several significant operational

benefits. The most important of these is the decoupling of the computational and

input/output streams of transactions. The computational processor is unburdened from

having to do I/O transactions. To the CP, all I/O appears memory mapped including not

only I/O devices but also all other computers in the system. That is, each sensor, actuator,

switch, computer, etc., with which the FTP interfaces can be addressed simply by using

the I/O System Services calls to read and write words in shared memory.

The AIPS system software, as well as the hardware, has been designed to provide a

virtual machine architecture that hides hardware redundancy, hardware faults, multiplicity

of resources, and distributed system characteristics from the applications programmer. The

particular module of the AIPS system software that is responsible for the FTP is called

local system services [1]. The local system software is responsible for the operating

system, interprocessor communication (CP, IOP) and the redundancy management of each

FTP site. The local system services are: FTP initialization, real-time operating system,

FTP Status Reporting, FTP Fault Detection, Isolation, and Reconfiguration (FDIR).

5-11

I COMPUTATIONA t ,:MCRY I

I [DATAEXCHANGE

S

H

A

R

E

D

B

U

S

INPUT/OUTPUT

SEQLENCER
(lOS)

INPUT/OUTPUT

SEOJBqCER

(los)

INTERVALTIMERS

J
PRI VA TE

I/O

BUS

_HANNEL

INPUT/OUTPUT NETWORK 1

INPUT/OUTPUT NETWORK 2

FAULT-TOLERANT CLOCKI4I_I_ CROSS-CHANNEL

INTERFACETEST "--_"_. H_T COMPUT_

INTER-COMPUTER

INTEi_ACE SEQUENCER

(ICIS)

MONITOR-INTERLOCK

WATCHDOG TIMERS

i I SYSTEM TIMER

I

i' I

_NPUT/OUTPUT_CESS_i _:_Y

M INTER-COMPUTER NETWORK

dk=._ N

CROSS-CHANNEL

PRIVATE BUS
i

! I

TIMERS I II0

Figure 5-2. Fault Tolerant Processor Architecture: Functional View (One

Channel)

The FTP real-time operating system supports task execution management, including

scheduling according to priority, time and event occurrence, and is responsible for task

dispatching, suspension and termination. It also supports memory management, software

exception handling, and intertask communication between companion processors (IOP and

CP). The FTP operating system resides on both the Computational Processor (CP) and the

5-12

Input/OutputProcessor(IOP). It uses the vendor-supplied Ada Run Time System (RTS),

and includes additional features required for the CSDL FTP real-time bi-processor

operating system. It is also responsible for providing time services to all users.

FTP FDIR has the responsibility for detecting and isolating hardware faults in the

CPs, lOPs, and shared hardware. It is responsible for synchronizing both groups of

processors in the redundant channels of the FTP and for masking and disabling outputs of

failed channel(s) through mask registers and interlock hardware. After synchronization, all

CPs will be executing the same machine language instruction within a bounded skew, and

all IOPs will be executing the same machine language instruction within a bounded skew.

FTP FDIR logs all faults and reports status to the FTP status reporter. It is responsible for

the CPU hardware exception handling. It is also responsible for transient hardware fault

detection and for running low priority self tests to detect latent faults. This redundancy

management function is transparent to the application programmer.

5.4.2 FTP Performance Data

The performance of the AIPS Fault Tolerant Processor was measured empirically in

order to characterize overheads of various system services [13]. Overhead data for Ada

Run Time System (RTS) and the scheduler, referred to in the last section as the FTP real-

time operating system, was gathered. Two implementations of the AIPS Fault Tolerant

Processor (FTP) were used for the data collection. The first engineering model, referred to

here as FTP Engineering Model 1, is a triplex FTP fabricated with 68010 microprocessors

and a 7:8 MHz clock. The second engineering model, referred to here as FTP Engineering

Model 2, is a quadruply redundant FTP with Motorola 68020 microprocessors, Motorola

68882 floating point co-processors, and a 14.5 MHz clock.

Figures 5-3 and 5-4 are diagrams of the Ada Run Time System (RTS) and

scheduler overheads. The Ada RTS executing on both models was the RTS and scheduler

software compiled with Verdix 5.4. Following are graphical representations of the task-

switching overheads for FTP Model 1 (Figure 5-3) and FTP Model 2 (Figure 5-4). The

rendezvous is a standard feature of the Ada language; the other three items are Draper

enhancements to the Verdix supplied RTS which allows alternative ways of initiating tasks.

A local event allows a user (task) to start a task on the same processor; a remote event

allows a task to be started on the companion processor. A timer dispatch allows cyclic

scheduling of a task. This is not possible with the standard Ada delay statement.

5-13

- Verdix 5.4 Run Time System
- 68010 processor @ 7.8 MHz.

0

Local Event

1000 /xs

Timer Dispatch

/ .
N

Milliseconds
0

Remote Event
1460 /xs Total

Simple Ada (360 Its CPU I
Rendezvous I I00 ItS CPU 2)

500/xs

j /
M N

0

Figure 5-3. Ada Run Time System & Scheduler Overheads for FTP Model 1

The Ada RTS and scheduling overheads for FTP Model 1 are approximately 23%

of a typical flight control frame of 40 millisecond with an average mix of 4 timer dispatches

and 1 local event dispatch per frame. For FFP Model 2 the operating system overheads are

approximately 6% of a 40 millisecond frame with an average mix of 4 timer dispatches and

1 local event dispatch per frame. With advanced technology insertions and a mature Ada

compiler, operating system overheads will be an insignificant fraction of the processor

throughput, as projected in Section 5.7.

5.4.3 FTP Reliability Parameters

Data was also collected in order to characterize the performance overheads of fault

tolerance/redundancy management for the AIPS engineering models. Several of the

parameters that characterize the reliability and that are used in the reliability models were

measured empirically.

Two periodic FDIR tasks execute on each processor: Fast FDIR, which runs at 25

Hz and Transient FDIR, which runs at 4.16 Hz. Figure 5-5 is a graph of the redundancy

management overhead under no fault conditions for FI'P Model 1 and FTP Model 2. The

overhead on Model 1 for Fast FDIR, which takes 2.4 milliseconds for each iteration on the

CP and 2.0 for each iteration on the IOP, is 5-6% of the 40 millisecond frame under

5-14

nominal no-fault conditions. The horizontal lines represent time in milliseconds. The top

horizontal line is the the time line for the CP and the bottom line is the time line for the IOP.

The darker vertical lines represent the time period of the redundancy management tasks.

Every 40 milliseconds Fast is executing on both the CP and IOP approximately 10

milliseconds out of phase with each other. Every 240 milliseconds both Fast and Transient

execute. The time between 240 and 280 is blown up for clarity. The bottom half is a graph

of the redundancy management overhead under no fault conditions for FTP Model 2.

- Verdix 5.4 Run Time System
- 68020 processor @14.5 MHz.

Local Event

245 Its
Timer Dispatch
540 Its

1
n

Milliseconds
0 ---_ 10

Simple Ada
Rendezvous
125 Its

11
Remote Event
465 Its Total

(165 Its CPUI,
300 Its CPU 2)

Figure 5-4. Ada Run Time System & Scheduler Overheads for FTP Model 2

The overheads for redundancy management with FTP Model 2 were reduced to

only 2% of a 40 millisecond frame under nominal no-fault conditions.

Measurements were also taken under several faulty conditions. Figure 5-6 is a

graph of the overhead for fault identification and recovery when a fault occurs in the data

exchange network. A data exchange fault is detected through the analysis of error latches

done by Fast FDIR. It does not desynchronize the faulty channel. In Figure 5-6 the time

lines are divided into three stages: 1) when the fault is actually identified, 2) the time

between fault identification and channel' repair and 3) after channel has been repaired and

recovered but it is in the trial period. In the fault identification stage, Fast FDIR takes 18%

5-15

of a 40 millisecond frame (up from 6% in the no-fault condition). During the time between

fault identification and channel recovery, Transient FDIR increases to 2.1% (from less than

1% under no-fault conditions). Immediately after channel recovery, during the trial period,

Transient FDIR increases to 8.6% (from less than 1% under no-fault conditions). The

graph for FTP Model 2 shows these times reduced by a factor of 3 to 4.

Figure 5-7 is a graph of the overhead for fault identification and recovery when a

fault occurs that causes a channel to desynchroniz¢. Unlike the data exchange fault Fast

FDIR on both the CP and the IOP detects the fault as shown in Figure 5-7. The times are

comparable to those of the data exchange fault.

These measurements indicate the overhead parameters for fault detection,

identification and recovery of a unsynchronized channel with FTP Model 2 were reduced to

only 5% of a 40 millisecond frame. With further technology insertions and a mature Aria

compiler redundancy management overheads will bc an insignificant fraction of total

processor throughput, as projected in Section 5.7.

5.5 input/Output Network Empirical Knowledgebase

5.5.1 I/O Network Architecture and Hardware and Software

Implementation Technology

For communication between a FTP and I/O devices, a damage and. fault tolerant

network is employed. The network consists of a number of full duplex links that arc

interconnected by circuit switched nodes. In steady state, the circuit switched nodes route

information along a f'Lxed communication path, or 'virtual bus', within the network,

without the delays which are associated with packet switched networks. Once the virtual

bus is set up within the network the protocols and operation of the network are similar to

typical multiplex buses. Every transmission by any subscriber on a node is heard by all the

subscribers on all the nodes, as though they were all linked together by a linear bus.

Although the network performs exactlyas a bus, itisfarmore reliableand damage

tolerantthan a linearbus. A singlefaultor limiteddamage can disableonly a smallportion

of the virtualbus,typicallya node or a linkconnecting two nodes. The network isable to

toleratesuch faultsdue to the richness of interconnections between nodes. By

reconfiguring the network around the faultyelement, a new virtualbus isconstructed.

Except forsuch rcconfigurations,the structureof thevirtualbus remains static.

The nodes are sufficiently intelligent to recognize rcconfiguration commands from

the network manager, which is resident in one of the FTPs. The network manager

performs the necessary diagnostics to identify the failed element and can change the bus

topology by sending appropriate reconfiguration commands to the affected nodes.

5-16

FTP Model 1

68010 7.8 MHz Triplex

o

lOP

Transient FDIR 0.150 msec

CP 6F_st°F4DoIRm2"f4ams:c ._e

! l,! I,P r I f l
40 80 120 160 200 240 280 300

Fast FDIR 2.0 msec

5 % of 40 ms frame _ I.q..... _
Transient FDIR 0.150 msec
less than 1% of 40ms frame

FTP Model 2
68020 14.5 MHz Quad

CP

!
o

I

,L
lOP

Fast FDIR 0.92 msec
2.3 % of 40 ms frame

, !, ! , l,
40 80 120

I I II 1' I
Fast FDIR 0.85 msec
2.1% of 40 ms frame

Transient FDIR 0.025 msec

_ less than 1% of 40ms frame

,
160 200 240 280 300

W

lllr_"" Transient FDIR 0.070msec
less than 1% of 40ms frame

Figure 5-5. Redundancy Management Overhead . No Fault Conditions

5-17

FTP Model 1

68010 7.8 MHz Triplex

Fast FDIR 2.5 msec Fast FDIR 2.5 msec
6.25 % of 40 ms frame 6.25% of 40 ms frame

/

_ Transient FDIR 0.85 msec I Transient FDIR 3.4 msec

Fast FDIR 7.35msframemsec _2.1% of 40 ms frame J_ 8.6 % of 40 ms frame
18 % of 40 ,I_ _ B¢__

c,
0 240 280 - ired 1920

, , , , I I _ _

Fast FDIR 2.15 msec Fast FDIR 2.15 msec
5.4 % of 40 ms frame Transient FDIR 0.25 msec

less than 1% of 40 ms 5.4 % of 40 ms frame

frame

FTP Model 2
68020 14.5 MHz Quad

Fast FDIR 1.4 msec Fast FDIR 1.4 msec
3.5 % of 40 ms frame 3.5% of 40 ms frame

II

Fast FDIR 2.53 msec _ Transient FDIR 0.58 msec I Transient FDIR 0.8 msec

6.3 % of 40 ms frame _1_1"5% of 40 ms frame _ _,,_2% of 40 me frame

CP , ,
40 _ I

"
Fast FDIR 1.5 me_c
3.8 % of 40 ms frame FDIR 0.08 msec Fast FDIR 1.5 msec

less than 1% of 40 ms 3.8 % of 40 ms frame

frame

Figure 5-6. Redundancy Management Overhead - Data Exchange Fault

5-18

FTP Model 1
68010 7.8 MHz Triplex

Fast FDIR 2.5 msec Fast FDIR 2.5 msec
6,25 % of 40 ms frame 6.25% of 40 ms frame

_ Transient FDIR 0.85 msec / Transient FDIR 3.4 msec

/

Fast FDIR 6.7 msec

\2.1% of 40 ms frame16.8 % of 40 ms frame 8.5% of 40 ms frame

j

0 40 120 240 280 1920

Fast FDIR 5.4 msec
13.5 % of 40 ms frame

Fast FDIR 2.15 msec Transient FDIR 0.25 msec Fast FDIR 2.15 msec
5.4 % of 40 ms frame less than 1% of 40 ms 5.4 % of 40 ms frame

frame

FTP Model 2
68020 14.5 MHz Quad

Fast FDIR 1.55 msec
3.8 % of 40 ms frame

Fast FDIR 1.92 msec
4.8 % of 40 ms frame

Fast FDIR 1.55msec
3.8% of 40 ms frame

_ Transient FDIR 0.58 msec / Transient FDIR 0.91 msec

/

.5% of 40 ms frame _ less than 1% of 40 ms

cP k

lOP

Fast FDIR 5.4 msec
13.5 % of 40 ms frame

Fast FDIR 1.5 msec
3,8 % of 40 ms frame

Transient FDIR 0.08 msec
less than 1% of 40 ms
frame

Chan_, 1o Jo ,Lc Z ,0 o

pair_

Fast FDIR 1.5 msec
3.8 % of 40 ms frame

Figure 5-7. Redundancy Management Overhead - Unsynchronized Channel

5-19

Hardware and software for the AIPS architecture has been designed and

implemented in two phases. The first phase completed was the centralized AIPS

configuration. The centralized AIPS architecture, as shown in Figure 5-8, is configured as

one triplex Fault Tolerant Processor (FTP), an Input/Output network and the interfaces

between the FTP and the network, referred to as input/output sequencers (IOS). The

laboratory demonstration of the input/output network consists of 15 circuit-switched nodes

which can be configured as multiple local I/O networks connected to the triplex FTP. For

example, the I/O network may be configured as one 15-node network, as shown in Figure

5-8, or as three 5-node networks.

The system software responsible for the I/O network is called Input/Output (I/O)

System Services. The I/O system services provide efficient and reliable communication

between the user and external devices (sensors and actuators). The I/O system services

software is also responsible for the fault detection, isolation and reconfiguration of the I/O

network hardware and FTP/network interface hardware (input/output sequencers). I/O

system services is made up of three functional modules: I/O user interface, I/O

communication management and the I/O network manager

The I/O user interface provides a user with read/write access to I/O devices or

Device Interface Units (DIUs), such that the devices appear to be memory mapped. It also

gives the user the ability to group I/O transactions into chains and I/O requests, and to

schedule I/O requests either as periodic tasks or on-demand tasks. A detailed description of

the I/O user interface is provided in [2].

The I/O communication manager provides the functions necessary to control the

flow of data between a FTP and the various I/O networks used by the FTP. It also

performs source congruency and error detection on inputs, voting on all outputs, and

reports communication errors to the I/O Network Manager. It is also responsible for the

management of the I/O request queues. A detailed description of the I/O communication

manager is provided in [2].

The I/O Network Manager is responsible for detecting and isolating hardware faults

in I/O nodes, links, and interfaces and for reconfiguring the network around any failed

elements. The network manager function is transparent to all application users of the

network. A detailed description of the I/O Network Manager is provided in [3].

5.5.2 I/O Network Performance Data

Performance measurements were done in order to determine the overheads for I/O

communication management [13]. The data gathered to date was collected on FI'P Model 1

using the Verdix 5.4 Ada compiler. The I/O communication manager is responsible for the

bi-directional transfer of data from the application tasks executing on the CP via shared

5-20

memory to the I/O request queue on the IOP and then to the I/O devices on the I/O network.

The application tasks are scheduled on the CP and the I/O requests axe scheduled on the

IOP.

15-NODE I/O NETWORK

I r I
_IOS IIIOS..,lllOS I I'os2 l_losIIlos2I

IIIllllllllIIlIIIIIIIIIIIIIIII
IE-, =lll _, =lli _, =I

TRIPLEX FTP

Node
Active Link
Spare Link

DIU Device Interface Unit
GPO/Network Interface (I/O Sequencer)

Figure 5-8. Centralized AIPS Configuration

The typical flight control application that was used for the performance data

collection required three tasks: A periodic task scheduled to execute at 10 Hz, an on-

demand task scheduled to execute at 5 Hz, and another on-demand scheduled to execute at

2.5 Hz. The periodic task started the on-demand tasks by using the local event provided by

the operating system (see Section 5.4.2). Each of the three application tasks is

synchronized with an on-demand I/O request. The synchronized application tasks and I/O

requests are the following:

a) The 10 Hz task starts a two chain I/O request which has 8 input transactions per chain.

b) The 5 Hz task starts a two chain I/O request which has 10 input transactions per chain.

5-21

c) The 2.5 Hz task starts a two chain I/O request which has 2 input transactions per

chain.

The I/O request processing times for the three application tasks of a typical flight

control application and FDIR are illustrated in Figure 5-9. The breakdown of the 10 Hz I/O

request associated with the 10 Hz application task and executing as part of the I/O

communication management on the IOP is illustrated in the timing diagram shown in

Figures 5-10. The time on the network is indicated by the shaded area of this diagram.

The performance data verifies that the dominating factors in the I/O communication

overhead arc the processor, compiler and the data exchange, not the network or the nodes.

A typical flight control application on FTP Model 1 is able to execute at 10 Hz. The

increased performance that will be gained using a state-of-the-art processor is discussed in

Section 5.7.

5.5.3 I/O Network Reliability Parameters

Data was also collected in order to characterize the performance overheads of

redundancy management for the AIPS I/O network. Several of the parameters that

characterize the reliability were measured in order to use as actual input to our reliability

models.'

The network manager is responsible for the initial network growth, which at.

power-on involves a complete suite of network hardware testing. After initial growth of

the I/O network, the network manager is responsible for the fault detection, isolation and

reconfiguration of faulty nodes, links or I/O sequencers (IOS) and spare link cycling.

Figure 5-11 indicates, for each type of network fault, the time period from the detection of

a fault until the re,configuration around the faulty component. The functions indicated by

the outlined letters are illustrated in detail in Figures 5-12 and 5-13. The majority of

network faults can be isolated with a simple node status collection chain. Several types of

network faults combined with the network state cannot be isolated to the correct node, link

or IOS with a status collection and analysis. Therefore, a network growth is necessary.

Under the heading of network growth, three types of growth have been timed. The first

growth with full diagnostics is only done at initial power-on. The second type of growth is

done in order to isolate a babbling node or a node that fails active. The single chain growth

is done to isolate under the following conditions:

1) A root link switch is required but zero spares are available.

2) A bad IOS corrupts the topology of the network such that the active network

path is inconsistent with the network database.

3) No active root link exists after network reconfiguration.

5-22

4) An unexpected event occurs during network reconfiguration.

5) The network is not active and a channel comes back on-line.

6) A fault in the network occurs during the cycling of a spare element.

7) The cycling of a spare link detects that the link is failed. Accordingly, the

network is returned to its state prior to the reconfiguration attempt, yet a fault

occurs during the attempt to restore the previous state.

8) An unexpected event occurs during the restoration of a network dement.

Figure 5-12 illustrates the overhead involved in the isolation and detection of a

failed leaf (end) node, and Figure 5-13 illustrates the timing breakdown of the single chain

grow. In each figure the total time is indicated by the top horizontal line.

As indicated by the diagrams, the time on the network does not cause extensive

redundancy management performance penalties. Instead, the performance penalties are

caused by the processor, compiler and data exchange hardware. A state-of-the-art

processor and a mature Ada compiler will allow the network to recover from a fault in real

time. The impact of technology insertion upon performance is discussed in Section 5.7.

cP

400 ms. Period

CP-IOP :
FDIR Phase "
Difference

IOP

2 m 41.1 ms.52.6 ms. 25 ms.

Hardware and Software Components:
- Verdix 5.4 Run Time System
- 68010 processor @ 7.8 MHz.
- custom I/O Sequencers @ 7.8 MHz.
- custom nodes - 68701 processor @ 2 MHz.
- 2 Mbits/second I/O bus

Legend

10 Hz. Task- approx. 41% of major frame
5 Hz. Task - approx. 53 % of major frame
2.5 Hz. Task - approx. 25 % of major frame
FIT FDIR - approx. 2 % of major frame

Figure 5-9. I/O Communications Management Overheads

5-23

lms.

2 ms.

41.1 ms.

3.8 ms.

-I

18.8 ms.

I/O Request

Processing on IOP
Global Event

Processing by
Extensions

Queue Manager accepts
the I/O Request

Load Data from
SM to DPM

it

Execute

I/O Request

IOS (shaded) and
Network Processing

Upload Dam and
Error Processing

Figure 5-10. I/O Request Processing (10 Hz Task)

Network Bandwidth: 2 Mbits/sec; Node quiet time: 256 ms

H/W: AIPS Engineering Model FTP 68010/7.8 Mhz

S/W: Verdix 5.4

Network FDIR:
Failed Channel

Failed IOS

Failed Link - Disjoint Leaf Node
F_ne_i Le_ _¢de

Failed Link - Disjoint Branch

Failed Node - Disjoint Branch

Network Growth:
Full Diagnostics

No Diagnostics

IOP Time

7 ms.

111 ms.

181 ms.

2_ meo

165 - 206 ms.

334 - 360 ms.

3.55 seconds

610 ms.

Figure 5-11. I/O Redundancy Management Overheads

5-24

265 ms.

Processing - 7.7 ms.ime on Network - 1.1 ms.

33 ms.
IOS Processing - 7.7 ms.

___Time on Network - 1.1 ms.

57 ms.

FDIR Processing

Transient Error
Check

lOS Check and Fault
Detection

R Fault Isolation

13ms.
Time on Network - 0.6 ms.

IOS Processing - 4.8 ms.

_'- __'_ ,Network
J _ I Reconfiguration

162 ms.

Figure 5-12. I/O Redundancy Management: Failed Leaf Node

I _ _ [Growth Processing

145ms.

93 ms.

Setup Chain Data
Based on Previous

I

| Network Status

lOS Processing -

Time on Network - 1.1 ms.

7.7 m__-_

42 ms.

Execute Chain and
Error Detection

Error Processing
and Logging

v

10 ms.

Figure 5-13. I/O Redundancy Management: Single Chain Grow

5-25

5.6 INTER-COMPUTER NETWORK EMPIRICAL KNOWLEDGEBASE

5.6.1 IC Network Architecture and H/W and S/W Implementation

Technology

A distributed AIPS configuration consists of a number of FTPs which may be

physically dispersed throughout a vehicle. These FTPs are linked together by a reliable,

damage-tolerant data communication pathway called the Inter-Computer (IC) network. The

network consists of a number of full duplex links that are interconnected by circuit

switched nodes identical to the I/O nodes and configured into three redundant virtual buses.

Each redundant bus is referred to as a network layer. The three layers are totally

independent and are not cross-strapped to each other. Each layer contains a circuit-

switched node for each processing site; thus every processing site is serviced by three

nodes of the IC network. FTPs are designed to receive data on all three layers, but the

capability of a FTP to transmit on the network depends on the FTP redundancy level.

Triplex FTPs can transmit on all three layers, duplex FTPs on only two of the three layers,

and simplex processors on only a single layer. In duplex and triplex FTPs, a given

processor can transmit on only one network layer. Thus malicious behavior of a processor

can disrupt only one layer.

The distributed AIPS engineering model was designed and implemented in the

second development phase of AIPS. Figure 5-14 is a photograph of the AIPS engineering

model. The laboratory configuration of the distributed AIPS engineering model, shown in

Figure 4-6, consists of four processing sites: three of the processing sites are triplex FTPs;

the fourth site is a simplex. Processing site 3 with its 15 node I/O network forms the

centralized AIPS configuration, which is a subset of the distributed AIPS configuration.

The interfaces between the FTPs and the IC network, shown in Figure 4-6, are called Inter-

Computer Interface Sequencers (ICIS). The interfaces between the FTP and the I/O

network are called Input/Output Sequencers (lOS).

The IC network and the ICIS are designed in strict accordance with fault-tolerant

systems theory. Thus an arbitrary random hardware fault, including Byzantine faults,

anywhere in the system can not disrupt communication between triplex FTPs. In other

words, the triplex IC network, in conjunction with the ICIS, provides error-masking

capability for communication between two triplex computers.

The IC network for the distributed AIPS engineering model configuration consists

of three layers of a circuit switched network. Each layer consists of five nodes; each node

for each of the four sites and one spare node.

The initial no-fault configurations of the three layers are identical. However, after a

link failure in one layer, the virtual bus configuration of that layer will change as the

network is reconfigured around the failed link. The other two layers do not have to be

reconfigured to make their virtual bus path identical to the third one.

5-26

Figure 5-14. AIPS Engineering Model

5-27

The fault detection, isolation, and reconfiguration of the IC network are the

responsibility of the IC Network Manager software. Nodes keep track of any transmission

errors which are protocol related and inform the Manager of these errors when queried by

the Manager. This error data can be analyzed by the Network Manager to determine the

source of transient faults on the network. The nodes also respond to status queries with the

status of the node and the ports. Other than these functions, the nodes are totally passive

circuit switching devices. The node has five ports and the common control circuits in a

node monitor messages coming in on all five ports whether that port is enabled or not.

This procedure is necessary for the initial growth of the network. It is also necessary to

monitor all ports so that the Network Manager will be able to respond to certain kinds of

failures where the established paths have been disrupted by a malicious failure. The

controller decodes the message to determine if it is a valid message and if it is intended for

that node. If so the node responds to the message. Messages sent to nodes include

requests for status and reconfiguration commands. The Network Manager requests status

as an input to its network monitoring task. The reconfiguration messages establish or

change the port enable status. Reconfiguration commands are preceded by an encoded

node address. Nodes do not respond to messages which are not preceded by valid

addresses. Reconfiguration commands are addressed to individual nodes although they are

heard by all nodes.

The system software responsible for communication between FTPs is called Inter-

Computer Communication Services. A detailed description of the Inter-Computer

Communication Services is provided in [4]. The Inter-Computer Communication Services

provide two functions: (1) inter-computer user communication services, that is,

communication between functions not located in the same FTP, and (2) inter-computer

network management.

The IC user communication service provides local and distributed inter-function

communication which is transparent to the application user. It provides synchronous and

asynchronous communication, performs error detection and source congruency on inputs,

and records and reports IC communication errors to IC network layer managers. Inter-

Computer communication can be done in either point to point or broadcast mode and is

implemented in each FTP.

The IC network manager is responsible for the fault detection, isolation and

reconfiguration of the network. The AIPS distributed configuration consists of three

identical, independent IC network layers which operate in parallel to dynamically mask

faults in a single layer and provide reliable communication. There is one network layer

manager for each network layer. However, the three network layer managers do not need

to reside in the same FTP. They are responsible for detecting and isolating hardware faults

in IC nodes and links and for reconfiguring their respective network layer around any failed

elements. The network manager function is transparent to all application users of the
network.

5-28

The inter-computercommunication services has been designed and implemented

according to the International Standards Organization (ISO) seven layered model [28].

5.6.2 IC Communication Performance Data

Some performance metrics were gathered in order to determine the overheads for IC

communication, using both logic analyzers and the system timer to make the time

measurements. All IC performance data was collected on FTP Model I using the Verdix

5.5 Ada compiler. These metrics recorded for a typical IC communication between two

tasks resident on different sites are presented in Figure 5-15. Twenty samples were taken

each time and the numbers were very consistent. The performance was measured from the

time the source application task calls the SEND_OUTPUT routine with a message until the

time sink application task has message available. The total time was 28.4 milliseconds.

The following components of the AIPS distributed engineering model were used:

1) two triplex sites (FTP 2 and FTP 3) with 68010 processors with 7.9 MHz clocks

2) custom IC Interface Sequencers (ICIS) with 7.9 MHz clocks

3) 2 MBit/second IC buses (three)

4) 15 custom network nodes

a) 68701 processor with a 2MHz clock

5) Verdix 5.5 compiler/RTS

6) Message length was 64 bytes

As indicated by Figure 5-15, the time on the network does not cause extensive

performance penalties. Instead, the performance penalties are caused by the processor,

compiler and data exchange hardware. A state-of-the-art processor and a mature Ada

compiler should increase performance significantly. The impact of these technology

insertions are discussed in the foliowing subsection.

5.7 Impact of Advanced Technology Insertions

The design and implementation of the AIPS hardware and software building blocks

was begun in 1983. Therefore, the Ada compiler used for most of the development and

performance metrics was an immature compiler. In the area of hardware, the

microprocessor used for the AIPS FTPs was a Motorola 68010 with a 7.9 MHz clock.

This hardware was used for both the I/O network and IC communication performance

evaluation. In order to project the 1992 performance characteristics for AIPS/ALS, the

impact of software and hardware advanced technology insertions was studied. Software

technology controls basic parameters such as the Ada Rendezvous time which depends

among other things on the Ada compiler technology. A number of compilers were

benchrnarked to determine the impact of advanced software technology on performance.

5-29

_ Overhead(Verdix 5.5)

Source FTP

Source FTP

Source FTP

IC Net

SEND_OUq_UT

(Add message to output queue, set event)

Time between event and MSR

MSR

Time for ICIS and IC Network transmission

3.7 ms

1.4 ms

5.7 ms

.4 ms

Sink FTP Ave time between polling for msg 2.5 ms

Sink FTP

Sink FTP

ICIS RM

(make msg congruent, check for errors)

Time to do context switch

9.7 ms

.9 ms

Sink FTP MSR

(Time between start and when its in buffer for user) 3.2 ms

Sink FTP GET_INPUT

(Remove message from buffer and pass to user)

Total Time

.Sins
28.4 ms.

Figure 5-15. IC Communication Overhead

Parameters that are a function of the hardware technology are the raw CPU

throughput, mean time between failures (MTBF) of CPU, memory, and raw bandwidth of

I/O and IC networks. A number of microprocessors were studied to determine the impact

of advanced hardware technology insertion on system performance.

Section 5.7.1 discusses the performance improvement gained from a mature Ada

compiler and Section 5.7.2 discusses the performance improvement gained from state-of-

the-art microprocessors.

5.7.1 Software Technology Insertion - Compilers

Dhrystone and Whetstone benchmarks were used in order to determine the

performance improvement of the FTP with several Ada compilers since the AIPS system

5-30

softwareis written in Ada. The purpose of using these benchmark tests with several Ada

compilers was to gain performance information about the behavior and influence of

compilers for the AIPS knowledgebase. The Dhrystone benchmark results to date are

shown in Figure 5-16. The Dhrystone benchmark was conceived by R. Weicker for

typical system software code. No floating operations are performed, but it does make use

of record and pointer data types. The Dhrystone is also a useful measure of integer

performance. The compilers used for the measurements were Verdix Ada 5.4, Verdix Ada

5.5, Verdix Ada 5.7, Green Hill C, and XD Ada (Beta 2). These benchmarks were done

on two engineering models of AIPS. The results of the benchmarks arc presented in

Figure 5-16. The checks on/checks off column refers to the run time checks made by Ada

compilers for out-of-range data.

Changing the microprocessor from a 7.8 MHz M68010 (FTP Model 1) to a 14.5

MHz M68020 (FTP Model 2) improved the throughput performance by 560 % to 590 %.

The advanced hardware technology insertions will be discussed in more detail in the next

section. FTP Model 1 was used to collect all performance data presented in Sections 5.5.2,

5.5.3, and 5.6.2 since the I/O and IC network interfaces were not designed and fabricated

for FTP Model 2.

The performance improvement gained from the series of Verdix compilers as they

matured is 18%. The compiler performance improvement gained between Verdix 5.4 and

the XD Ada compiler is 70%.

Computer

FTP Model 1

(68010 7.8MHz clock)

FTP Model 1

(68010 7.8MHz clock

FTP Model 2

(68020/68882/14.5MHz clock)

FTP Model 2

(68020/68882/14.5MHz clock)

FTP Model 2

(68020/68882/14.5MHz clock)

FTP Model 2

(68020/68882/14.5MHz clock)

FTP Model 2

(68020/68882/14.5MHz clock)

Figure 5-16. Dhrystone

Compiler

Verdix Ada 5.4

Dhrystone/Sec.

Cks. On/Cks.Off

384

Verdix Ada 5.5 413

Verdix Ada 5.4 2166

Verdix Ada 5.5 2452

Verdix Ada 5.7 2552

Green Hill C /3179

XD ADA (Beta2) 3670 _358

(Compiler) Benchmark Results

5-31

TheWhetstonebenchmarkresultsto date are shown in Figure 5-17. It provides a

good metric of a microprocessor's performance while executing typical scientific software.

Since the Whetstone is a measurement of floating point intensive computation, this

benchmark was only done on FTP Model 2, which has a 68882 floating point co-

processor, ff-'TP Model 1 does not have a floating point co-processor.) Ada compilers do

not fully support the floating point 68882 co-processor; therefore floating point co-

processor routines were added to Verdix 5.4, 5.5, and XD Ada (Beta 2). These Draper

additions are indicated by the'+' in Figure 5-17.

f,mlgu
FTP Model 2

(68020/68882/14.5MHz clock)

FTP Model 2

(68020/68882/14.5MHz clock)

FTP Model 2

(68020/68882/14.5MHz clock)

Figure 5-17. Whetstone (Compiler) Benchmark

f,mazt
Verdix Ada 5.4+

Verdix Ada 5.5+

XD Ada Beta 2 +

Results

K Whetstones/Sec.

493

865

929

The compiler performance improvement gained between Verdix 5.4 and the XD

Ada compiler is 88%.

5.7.2 Hardware Technology Insertion - Microprocessors

The hardware technology survey [7] shows that the microprocessor performance

can be expected to increase dramatically over the next several years. In particular, the

introduction of RISC (Reduced Instruction Set Computers) based architectures, 32-bit data

and address paths, and higher clock frequencies will contribute significantly to the

increased throughput performance. It is expected that in the ALS Preliminary Design

Review time-flame (circa 1992), the JIAWG (Joint Integrated Avionics Working Group)

microprocessors such as the MIPS R3000 and the Intel 80960 32-bit RISC machines will

be operational in 40 MHz clock rates for flight system applications. The details of the

AIPS FTP that utilizes such a microprocessor are provided in the AIPS for ALS

Architecture Synthesis Report [8].

The technology survey also collected a number of throughput benchmarks results

for a number of different microprocessors. Based on these benchmarks as well as similar

benchmark data collected on the AIPS FTPs, we extrapolate conservatively that the

AIPS/ALS FTP, programmed in Ada using the XD Ada compiler, can be expected to

deliver 40K Dhrystones per second and 18 Double Precision Mega-Whetstones per second.

5-32

The AIPS/ALS Fault Tolerant Processoris projected to have a throughput
performancethatis 100timesbetterthanFTPModel 1(7.8MHz M68010basedFTP)for
systemsoftwareandintegercode. For floating point operations,theAIPS/ALS FTPwill
beabout20 timesfasterthanFTPModel 2 (14.5MHz M68020/68882basedFTP). The
impactof bothsoftwareandhardwaretechnologyis summarizedin thefollowing section.

5.8 Conclusions

A setof architecturalparametershavebeendefinedfor theAIPS distributedfault
tolerantcomputerarchitecturethata systemdesignercanchooseto meettheperformance
andreliability requirementsfor a specificapplication.A setof performanceandreliability
metrics have also beendefined that can be usedto evaluateand comparecomputer
architecturesfor real time mission- and safety- critical aerospaceapplications. The
performabilitydatameasuredon two AIPSengineeringmodelswasalsopresented.The
majorconclusionsbasedonthisempiricaldataareasfollows.

TheRedundancyManagementoverheadsfor theMotorola68020-basedAIPSFault
TolerantProcessorconsumeonly 2%of theprocessorthroughputundernominalno-fault
conditions.

TheAda operatingsystemoverheadsconsumeapproximately6%of theprocessor
throughputwith anaveragemix of 4 timerbaseddispatchesand 1localeventdispatchper
framefor a68020-basedFTP. Thishasdecreasedwith themorematureXD Adacompiler
andit is likely to decreaseevenfurther.

The synchronizationof redundantprocessorsin the FTP slows down the FTP
processorsby about5%. Thusabout87%of therawprocessorthroughputis availablefor
theapplicationstasksafteraccountingfor variousoverheads.This makestheAIPS FTP
extremelyefficientandcompetitiveevenwith simplexprocessors.

Thethroughputof theMotorola68020-basedengineeringmodelFTP,programmed
in XD Ada compiler,was benchmarkedat about 5000Dhrystones/secper processoror
about 10,000Dhrystones/secfor the AIPS FTP which consistsof 2 processorsper
channel.This throughputisexpectedto beabout80,000Dhrystones/secfor theAIPS/ALS
FTPwhich is expectedto usea state-of-the-art40MHz 32-bit RISCmicroprocessr.The
throughputperformanceof theAIPS/ALS FTP is expectedto beabout 100timesbetter
than the original AIPS engineering model FTP which used the Motorola 68010
microprocessors.

Thedominatingfactorsin theI/O RedundancyManagementandoverheadarefound
to be the processor,compiler andFTP dataexchangeandnot the I/O network or node
speed. In theAIPS FTP Model 1, redundantnetworksarenecessaryto recoverfrom a

5-33

network fault while continuing to access sensors in real time. A state-of-the-art

microprocessor and a mature Ada compiler would increase the performance by a factor of

100 which will allow an I/O network to recover from a fault in real time. For example, a

single-chain total regrowth of a 15-node I/O network will take less than 2 resets.

The dominating factors in the Inter-Computer Communications overhead are found

to be the processor, compiler and FTP data exchange and not the IC network or node

speed. A state-of-the-art microprocessor would increase the performance by a factor of

100 which will allow inter-computer communication in real time. For example, the average

time to send a message over the inter-computer network, from a task in one FTP to another

task on a different FTP, will be less than 3 msecs.

Future plans include measurement of intercomputer Redundancy Management

overheads, probability distribution functions for fault detection, isolation and

reconfiguration, and other performance and reliability metrics mentioned in this section.

5-34

6.0 SUMMARY AND CONCLUSIONS

This report has defined a design methodology that can be used to produce validated

fault tolerant distributed computer system architectures, suitable for a broad range of

advanced aerospace applications, in a cost effective manner. The design for validation

methodology uses a substantial body of knowledge that we collectively call the architecture

design and validation knowledgebase. Such a knowledgebase has been created for the

AIPS architecture over the past few years. A part of that knowledgebase has been

presented in this report. Other parts of the AIPS knowlodgebase can be found in other

related NASA reports [1-9].

The total body of knowledge necessary to design and validate distributed fault

tolerant computer system architectures is vast. Although significant progress has been

made in acquirimg, organizing, and documenting this knowledgebase for the AIPS

architecture, much work remains to be done in making it complete. This section

summarizes the salient results of the present study and recommends steps that are necessary

to complete the acquisition and organization of the remaining parts of the knowledgebase.

6.1 Architecture Knowledgebase

The relationships among AIPS mission requirements, architectural attributes, rules,

and guidelines have been constructed and expressed through the use of a Directed Acyclic

Graph (DAG) conceptualization. The relationships depicted in the directed graphs allow a

designer unacquinted with the details of fault tolerance technology to understand key issues

regarding the organization and operation of AIPS. They also provide a framework which

permits traceability of the AIPS mission requirements to the AIPS design specifications, a

traceability which it is believedd will enhance the AIPS validatability. The approach also

provides a pedagogy for the AIPS fault tolerance theory, and explains the rationale behind

the AIPS approach to fault tolerance.

This is the first time a transitive relationship between mission requirements,

architectural attributes, rules, and guidelines using DAG has been attempted for a fault

tolerant distributed computer architecture. Naturally, the overall organization of this

knowledgebase is less than optimal. Having gone through the exercise of constructing

these directed acyclic graphs once, it is much more clear how this complex knowledgebase

could be better organized. Section 2.7.2 provides detailed recommendations for future

work in this area. Furthermore, steps that are necessary to complete the architecture

knowledgebase are also contained in this section.

6.2 Performability Knowledgebase

The performance and reliability, or performability, of the AIPS building blocks has

been characterized using analytical models and via empirical measurements on the AIPS

6-1

engineeringmodels. The analytical models, though general in nature, were solved using

the parameters for the Advanced Launch System mission scenario.

The reliabilityanalysisresultsindicatethat a quadruply redundant AIPS Fault

Tolerant Processor and a qu&uply redundant Inter-Computer network willmeet the ALS

availability and reliability requirements discussed in Section 4 without any need for

reconfiguration. Specifically, these requirements include a 95 per cent availability of lauch

vehicle avionics after a 1 week unattended operation on the launch pad and a probability of

failure that is less than 10 -5 for the boost phase and on-orbit opertions.

The performance of the AIPS building blocks was modeled in the context of the

ALS avionics system performance requirements. While much progress was made in

extracting ALS requirements from Martin Marietta, additional work needs to be done to

obtain avionics requirements at the task-level granularity. Also, a mutually meaningful

definition of I/O and inter-function communication requirements needs to be determined

and the relevant parameters quantified.

In the modeling effort, some preliminary ADAS models of the FTP were

constructed. Additional lower-level ADAS models of the detailed workings of the FTP,

lOS, and I/O network,need to be constructed. The model also needs to be expanded to

include multiple ZiPs communicating over the Inter-Computer network. The task

granularity requirements and the multi-FTP ADAS models can then be used for estimation

of the AIPS performance. In this context, the manual process of allocating ALS functions

to multiple FTPs and to the computational and the I/O processors within an FTP also needs

to be automated so that a more optimal task allocation can be achieved.

Significant performance results were also collected on the AIPS engineering

models. These measurements validated the claims of very efficient implementation of fault

tolerance on AIPS. For example, the redundancy consumes less than 2 percent of

processor throughput on Motorola 68020-based FTP. And the synchronization of

redundant processors in the FTP slows down the processors by less than 5 per cent. The

Ada realtime operating system consumes an additional 6 per cent of processor throughput

assuming an average mix of 4 timer-based task dispatches and 1 local event-based dispatch

per frame. Thus, about 87% of raw processor throughput is available for applications

tasks in the FTP. This makes the AIPS FTP extremely efficient and competive even with

simplex processors.

The throughput of the Motorola 68020-based engineering model FTP, programmed

in XD Ada compiler, was benchmarked at about 5000 Dhrystones/sec per processor or

about 10,000 Dhrystones/sec for the AIPS FTP which consists of 2 processors per

channel. This throughput is expected to be about 80,000 Dhrystones/sec for the AIPS/ALS

FTP which is expected to use a state-of-the-art 40 MHz 32-bit RISC mieroprocessr. The

throughput performance of the AIPS/ALS FTP is expected to be about 100 times better

6-2

than the original AIPS engineering model FTP which used the Motorola 68010

microprocessors.

The dominating factors in the I/O Redundancy Management and overhead are found

to be the processor, compiler and FTP data exchange and not the I/O network or node

speed. In the AIPS FTP Model 1, redundant networks are necessary to recover from a

network fault while continuing to access sensors in real time. A state-of-the-art

microprocessor and a mature Ada compiler would increase the performance by a factor of

100 which will allow an I/O network to recover from a fault in real time. For example, a

single-chain total regrowth of a 15-node I/O network will take less than 2 msecs.

The dominating factors in the Inter-Computer Communications overhead are found

to be the processor, compiler and FTP data exchange and not the IC network or node

speed. A state-of-the-art microprocessor would increase the performance by a factor of

100 which will allow inter-computer communication in real time. For example, the average

time to send a message over the inter-computer network, from a task in one FTP to another

task on a different FTP, will be less than 3 msecs.

Future plans include measurement of intercomputer Redundancy Management

overheads, probability distribution functions for fault detection, isolation and

re,configuration, and other performance and reliability metrics mentioned in this section.

6.3 Formal Proofs

This project comprises a first step in the formal specification and verification of the

interactive consistency function for ultrareliable digital computing systems. The phases of

a complete formal specification and verification effort are to (1) formally specify the

concept of interactive consistency, (2) develop and specify a detailed finite-state machine

model, (3) develop a circuit-level implementation, and (4) develop mathematical mappings

between each level of specification.

The current project, which comprised only phase (1) of the overall effort, was

carried out without unreasonable difficulty by non-experts in the field of formal

verification. No major problems were found or foreseen in this phase which would make

the completion of phases (2), (3), or (4) unduly difficult. Successful completion of these

phases would result in the availability of a verified and valuable building block for the

construction of ultrareliable digital systems.

6-3

614

7.0 REFERENCES

.

.

.

.

.

.

.

*

,

10.

Burkhardt, L., L. Alger, R. Whittredge, and P. Stasiowski, "Advanced Information

Processing System: Local System Services", NASA Contractor Report 181767,

April, 1989.

Masotto, T., and L. Alger, "Advanced Information Processing System: Input/Output

System Services", NASA Contractor Report 181874, August 1989.

Nagle, G., L. Alger and A. Kemp, "Advanced Information Processing System:

Input/Output Network Management Software", NASA Contractor Report 181678,

May 1988.

Burkhardt, L., T. Masotto, J. Terry Sims, R. Whittredge, and L. Alger, "Advanced

Information Processing System: Inter-Computer Communication Services", NASA

Contractor Report 187556, September 1991.

Lala, J.H. and S.J. Adams,"Inter-Computer Communication Architecture for a

Mixed Redundancy Distributed System", Journal of Guidance, Control, and

Dynamics, Vol. 12, No. 4, July-August 1989.

Sims, T., "Advanced Information Processing System Inter-Computer Network Data

Source Congruency Algorithm Simulation", CSDL Memo on IC Redundancy

Management, Memo No. AIPS-87-11, April, 1987.

Cole, R., "Advanced Information Processing System for Advanced Launch System:

Hardware Technology Survey and Projections", NASA Contractor Report 187555,

September 1991.

Lala, J.H., R. Harper, K. Jaskowiak, L. Alger, G. Rosch, and A. Schor,

"Advanced Information Processing System for Advanced Launch System: Avionics

Architecture Synthesis", NASA Contractor Report 187554, September 1991.

Rushby, J., F. von Henke, and S. Owre, "An Introduction to Formal Specification

and Verification Using EHDM", Computer Science Laboratory, SRI International,

Technical Report SRI-CSL-91-2, Menlo Park, CA, February 1991.

Lala, J.H., L.S. Alger, R.J. Gauthier, and M.J. Dzwonczyk, "A Fault Tolerant

Processor Architecture to Meet Rigorous Failure Requirements," 7th AIAA -IEEE

Digital Avionics Systems Conference, Fort Worth, TX, October 1986, CSDL-P-
2705.

7-1

PI_, I_AGE _,.ANK blOT F'tLME,O

11.

12.

13.

Gauthier, R.J.,J.H. Lala, and J.J.Deyst, Jr.,"Advanced Avionics Technology

Demonstration: AlternativeFault-TolerantArchitectures Study", CSDL-R-1949,

Prepared forNaval Air Development Center,Waminstcr, PA, April 1987.

Lala, J.H., "An Advanced Information Processing System", 6th AIAA-IEEE Digital

Avionics Systems Conference, Baltimore, MD, Dec. 1984, CSDL-P-1952.

Alger, L. and J. Lala, "Performance Evaluation of a Real-Time Fault Tolerant

Distributed System", 23rd Hawaii International Conference of System Sciences,

Kailua-Kona, Hawaii, January 1990.

14. "Advanced Information Processing System Plan," CSDL-R-2032, October 1987.

15. "Advanced Information Processing System (AIPS) Proof-of-Concept System: Fault

Tolerant Processor Requirements/Design Specification," CSDL-AIPS-84-161, June

1985.

16. "AIPS System Requirements," CSDL Report No. AIPS-83-50, August 1983.

17. "AIPS System Specification," CSDL Report No. CSDL-C-5709, May 1984.

18. "AIPS POC System I/O Network System Services Functional Requirements,"

CSDL-AIPS-84-138, October 1984.

19. "AIPS POC System FTP Requirements/Design Specifications," CSDL-AIPS-84-

161, June 1985.

20. "AIPS POC System Network Node Requirements/Design Specifications," CSDL-84-

162, July 1985.

21. "AIPS POC System Functional Design of Communication Services," CSDL-AIPS-

85-04, May 1985.

22. "AIPS POC System Functional Design (Rev. 1), CSDL-AIPS-85-81, November

1985.

23. "AIPS POC System Phase 1I Configuration Management Plan," CSDL-AIPS-85-

105, November 1985.

24. "AIPS POC System Software Requirement Specifications Builds 1 and 2," CSDL-

AIPS-85-113, June 1985.

7-2

25.

26.

27.

28.

29.

30.

31.

32.

33.

"AIPS POCSystem Software Requirement Specifications Build 3," CSDL-AIPS-85-

115, July 1985.

"AIPS POC System AIPS I&E Facility: Functional Reports and Description," CSDL-

AIPS-85-158, August 1985.

"AIPS POC System Software Requirements Specifications Build 4," CSDL-AIPS-

85-246, January 1986.

Martin, J. Distributed Processing Software and Network Strategy, Savant Research

Studies, Lancashire, England, October 1979.

Hopkins, A.L., Jr., J.H. Lala, and T.B. Smith, III, "The Evolution of Fault Tolerant

Computing at the Charles Stark Draper Laboratory, 1955-85", D_.C.,0..C,.KlI._t_

Computing and Fault-Tol¢rant System_, Vol. 1: Th¢ Evolution of Faul;-Tol¢rant

Computing. Eds: Avizienis. Kopetz. Laprie, Springer Verlaag, pages 121-140, May
1987.

Cullyer, W.J., Pygott, C.H., "Hardware Proofs using LCF-LSM and ELLA," Royal

Signals and Radar Establishment Memorandum No. 3832, September 1985.

Lamport, L., Shostak, R., Pease, M., "The Byzantine Generals Problem," A CM

Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982.

Dzwonczyk, M. and H. Stone, "A Fault-Tolerant Avionics Suite for An Entry

Research Vehicle", 8th AIAA/IEEE Digital Avionics Systems Conference, San Jose,

CA, October 1988, CSDL-P-2810.

Lala, J.H., "A Byzantine Resilient Fault-Tolerant Computer for Nuclear Power Plant

Applications", 16th International Symposium on Fault Tolerant Computing, Vienna,

Austria, July, 1986.

7-3

Report Documentation Page

1. Report No.

NASA CR- 187544

2, Government Accession No,

4. Title and Subtitle

Advanced Information Processing System:

Validation

Design and

Knowledge Base

7. Author(s)

Richard E. Harper, Linda S. Alger, and

Jaynarayan H. Lala

9. Performing Organization Name and Address

The Charles Stark Draper Laboratory, Inc.

Cambridge, MA 02139

12. Sponsoring Agency Name and Address

National Aeronautics and Space

Langley Research Center

Hampton, VA 23665-5225

Administration

3. Recipient',= Catalog No.

5. Report Date

September 1991

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

506-46-21-56

11. Contract or Grant No.

NASI-18565

13. Ty_ of ReportandPeriodCovered

Contractor Report

14. Sponsoring .Agency Code

i

15. Su_lomentaw Notes

Langley Technical Monitor: Felix L. Pitts

Final Report

16. Abstract

The overall objective of the Advanced Information Processing System (AIPS) program is to
develop the knowledge base which will allow achievement of validated fault-tolerant distributed
computer system architectures, suitable for a broad range of applications, including those which

have a failure probability requirement as low as 10 .9 at 10 hours. The specific quantitative and

qualitative design objectives of AIPS are discussed later in this report. The purpose of this report
is to provide a comprehensive detailed documentation of the knowledge base which forms the
foundation of Ali'S.

17, Key Words(Suggest_ byAumor(s))

Fault-Tolerant Digital Computers

Validation Knowledge Base

Fault Tolerance

Distributed Processing

18. D_tribution Statement

Unclassified - Unlimited

Subject Category 62

19. _cur_ Classif. (of this repot)

Unclassified

NASA FORM 1$21 OCT 86

_. S_ur_ Clair. (of this _)

Unclassified

21. No. of pages

194

' 22. Price

